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Question 1: (0 points)

Simple Regression: Recap

In Correlation and Regression section (part of Descriptive Statistics), we saw how the relationship between two variables can be
described by using scatter plots to provide a picture of the relationship and correlation coefficients to provide a numerical measure. In
many economic and business problems, a specific functional relationship is needed. For instance,

o A manager would like to know what mean level of sales can be expected if the price is set at \pounds 15 per unit.
o If 300 workers are employed in a factory, how many units can be produced during an average day?

In many cases, we can adequately approximate the desired functional relationships by a linear equation as explained in the following
sections. There are three reasons why we may wish to formalise a (linear) relationship

o We may want to quantify the relationship between variables.
o We may then want to use such relationships for predicting outcomes (see the above two examples).
o We may want use such models to decide whether there are causal relationships between variables.

The last of these is actually very difficult to achieve and we will not be able to touch on this in the context of this unit. It remains true,
that correlation measures and regression models are, in the first place, merely descriptive statistics. Any correlations described in such
models do not automatically reflect causal relationships.



Question 2: (1 point)

Linear Regression Model

We first look at what we have studied before. We used the relationship res; = y; — a — bx; to calculate a residual. Re-arranging
this delivers the equation which we will typically use to describe a regression relationship:

y; = a+bz; +res;

where a and b represented the intercept and slope coefficients for a particular line of best fit arising from a particular sample (which is
why we call @ and b sample estimates - but more on this in the inference section of the course). If we want to write this relationship in
a general way, i.e. not specialised on a particular sample, but for the population of our data, then we write:

Y; = a+ Bz, +¢;

Here we have replaced the a and b with a and (3 and the residuals res; with € and [ represent the unknown values of the
intercept and slope parameters that describe a liner relationship between g, and x; in the population. The error terms €; now
represent error terms acknowledging that, even in the population, the linear relationship will not precisely represent the data.

Only once we have a sample of data we are able to find a line of best fit (described by a and b). We should note that this line (and
hence the a and b values) is unique to the particular sample. A slightly different sample would have delivered different values for a
and b. (Note: This is not unique to a regression relationship. Assume you have a population of values for some random variable m;
with an unknown mean pym,. Then you take a sample of values from this population and obtain a sample mean, m. Had you taken a

different sample, this 1 would also be different.)

When undertaking a regression analysis this is not the case. The variables on the left hand side and the right hand side have different
functions and therefore we call them by different names, such as dependent variable (on the left) and explanatory variable (on the
right).

Yi =a+p i e
dependent variable independent variable
explained variable explanatory variable

outcome variable

We know that we should use our economic knowledge to decide which variable is dependent/explained and which is
independent/explanatory.

Let's continue thinking about the relationship between height and weight. This height-weight example is fairly obvious, the weight of a
person, Y, can be modeled as a linear function of the height, X. Consider a person of specific height, z; then that person's weight
y; can be seen as a function of that height as long as you recognise that there is an error term for individual variation. In fact, when
thinking about regression it is more useful to think about groups of people rather than individuals. Consider all people with a specific
height (e.g. * = 179cm), then the average weight of these people can be seen as a function of that height.

In the real world we know there are other factors that influence the height. These include identifiable factors, such as the age, gender
and weight of parents. There are also behavioural factors such as nutrition and exercise regime. In addition, there are other unknown
factors that can influence the weight.

In a simple linear equation we model the effect of all factors, other than the X variable, in this example height, are assumed to be part
of the random error term, labeled as € This random error term is a random variable we assume to have mean 0. This is a rather
crucial assumption. The error terms are unobserved and hence this is an assumption! In further econometrics units you will talk a lot
about this assumption and discuss the (many) reasons why this assumption may fail.



In fact, for some of the statistical inference to work below we may have to make further assumptions regarding the error terms. For
instance that they are normally distributed and have constant variance. These assumptions tend to be more benign and we can deal
with situations in which they are not met. Again, details here are beyond this particular course.

Thus, the model is as follows:

yl- =a-+ ,3 2132' + Ei
Weight Height Other Factors

Estimation

The population regression line is a useful theoretical construct, but for applications we need to determine an estimate of the model
using available data. Regression analysis is the statistical technique that finds the optimal values for & and 3 given a particular
sample. We return to the example of 12 observations with height (taking the role of ) and weight (in this example representing y)
data.
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We would like to find the straight line that best fits these points, which is called line of best fit. Let's now calculate the actual sample
estimates a and b. Do not forget these values will be specific to that particular sample of 12 observations. We will continue to not
know what the true values o and (3 are and, if we had a different sample we would get somewhat different values for a and b.

Before we do so we want to point out what optimal means in this context. In fact it implies that we want to minimise (in a particular
sense!) the values for res; for all 1 = 1,...,n observations in the sample.
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In fact what we want to minimise is the \emph{sum of squared residuals} and this is called least squares procedure.

As shown in Figure 2, there is a deviation between the observed value, Y and the predicted value, g}z (which is the value on the
regression line), in the estimated regression equation for each value of X, where Yi — 3}1 The term we want to minimise is (

(y; — g}i)2). As we have i = 1,...,n of these terms, what we really wish to minimise is the sum of these squared terms:
n n n
SSE = (y; —91)% + (yg — 99)*+... +(y19 — 912)° = Yores?=> (y; 302 =3 (y; —a bay)?
=1 =1 =1
The estimates a and b are those values in
Y; = a+ bx;

that minimise the SSE. This is where the name least squares comes from. Often you will find the term Ordinary Least Squares (OLS)
where the ordinary comes from the fact that we are fitting a linear model.

This is equivalent to saying that we want to minimise the variation of our sample observations around the regression line (a + bx). Or
better, we want to place the line of best fit such that the resulting variation is minimised.

We use differential calculus to obtain the coefficient estimators that minimise SSE (you have a function, you have two coefficients
which you can vary - a and b - you know how to do that). The resulting coefficient estimator is as follows:
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Note that the numerator of the estimator is the sample covariance of X and Y and the denominator is the sample variance of X. The
constant or intercept estimator is as follows:

a=9y—bzx

So far this was all a repetition of what was done in the descriptive statistics section.

The Rising Hills Manufacturing Company in Redwood Falls regularly collects data to monitor its operations. These data are stored in
the data file Rising Hills. The number of workers, X, and the number of tables, Y, produced per hour for a sample of 10 workers is
shown in Figure 3. If management decides to employ 25 workers, estimate the expected number of tables that are likely to be
produced.

70

Number of Tables
B o (®)]
o o o
| | u

W
)
]

)
o
|

| | | | |
10 15 20 25 30

Number of Workers

Using the data, we computed the descriptive statistics:
Cov(x,y)=106.93,

s522=42.01, §=41.2, and =213

From the covariance we see that the direction of the relationship is positive.

You specify the following linear regression model

y = o+ Bz + residuals



Use the descriptive statistics, to compute the sample estimates for the regression coefficients:
b =

a =

From this, the sample regression line is as follows:

= + T

For 25 employees we would expect to produce how many tables
E(ylz = 25) =

For which of the following values of x would you feel comfortable using this estimated model to predict the output?

@z =0

(b)z = 10
(c)z =20
(d)z = 30
(e)z =40
(f) z =50
(9)z = 100

(h)yx = 500



Question 3: (0 points)

Goodness of Fit

Now we are ready to develop measures that indicate how effectively the variable X explains the behaviour of Y. In our height-weight
example shown in Figure 2, Weight, Y, tend to increase with Height, X, and, thus, Height explains some of the differences in Weight.
The points, however, are not all on the line, so the explanation is not perfect. Here, we develop measures based on the partitioning of
variability that measure the capability of X to explain Y in a specific regression application.

The analysis of variance, ANOVA, for least squares regression is developed by partitioning the total variability of Y into an explained
component and an error component. In Figure 4 we show that the deviation of an individual Y value from its mean can be partitioned
into the deviation of the predicted value from the mean and the deviation of the observed value from the predicted value:

v —y=(y;—9)+ (y; — ;)

b [

i X

We square each side of the equation because the sum of deviations about the mean is equal to 0 and sum the result over all n points:

12 , L , L2 ,
Y w0 = -9+ )
=1 i=1 i—1

Some of you may note the squaring of the right-hand side should include the cross product of the two terms in addition to their
squared quantities. It can be shown that the cross- product term goes to 0. This equation is expressed as follows:

SS8T = SSR + SSE

Here, we see that the total variability S.ST" can be partitioned into a component SSR that represents variability that is explained by
the slope of the regression equation. (The mean of Y is different at different levels of X.) The second component SSE results from
the random or unexplained deviation of points from the regression line. This variability provides an indication of the uncertainty that is



associated with the regression model. In short, the total variability in a regression analysis, SST', can be partitioned, analysis of
variance, into a component explained by the regression, SSR, and a component due to unexplained error, SSE. The components
defined as follows:

12
Sum of Squares Total:SST = Z (y; — 7])2
i=1
12
Sum of Squares Regression:SSR = Z (y; — 1})2
=1
n n n
Sum of Squares Error:SSE = Z res% = Z (y; — ?31)2 = Z (y; —a— ba:i)2
=1 =1 i=1

The ratio of the sum of squares regression, SSR, divided by the total sum of squares, SST', provides a descriptive measure of the
proportion, or percent, of the total variability that is explained by the regression model. This measure is called the coefficient of

determination—or, more generally, R2:

_SSR _, SSE

2_ 200t 222
R_SST SST

The coefficient of determination is often interpreted as the percent of variability in Y that is explained by the regression equation. This
quantity varies from 0 to 1, and higher values indicate that the variation in the explanatory variables explain a larger proportion of the

variation in the explained variable. Caution should be used in making general interpretations of R2 because a high value can result
from either a small SSE, a large SST, or both.

The coefficient of determination, Rz, only for simple regression is equal to the simple correlation squared:

B2 _ 2

This provides an important link between correlation and R2, the regression model.



Question 4: (0 points)

Excel application

With this background let us return to our height-weight example with data and look at how we use the partitioned variability to
determine how well our model explains the process being studied. In most situations we use a spreadsheet such as Excel to obtain
the regression coefficients to reduce the work load and improve computational accuracy. Figure 5 shows the EXCEL output of the
height-weight example.

Video walkthrough of how to perform a simple regression estimation in EXCEL

Simple Regression in EXCEL

SUMMARY QUTPUT

Regression Stotistics
Multiple R 0.863234
R Square 0.745174
Adjusted R Sc 0.719691
Standard Erro 8.232576

Observations 12
AMNOVA

df 55 M5 F Significance F
Regression 1/ 1981.914 1981.914 29.24242 0.000258182
Residual 100 677.753 67.7753
Total 11 2659.667

Coefficientandard Err  £5tat  P-value | Lower 95% Upper 35%ower 95.09pper 95.0%
Intercept -60.7461 39.81353 -1.52576 0.158053 -149.4561561 27.96398 -149.450 27.96398
X Wariablel 3.215652 0.594651 5.407626 0.000298 1.890686294 4.540618 1.890686 4.540618

From this EXCEL regression output, we could get some key information:

e R square statistic is 0.745174 so R? = 0.745174, which we can see that here 74.5\% of the variation is explained by that
linear relationship.



The sample size (Observations) of 12.

—

Sum of Squared Regression (SSR) is 1981.914, which is Zzlil (y; — g)2.

It shows The amount of variability explained by the regression equation.
Sum of Squared Residuals (SSE) is 677.753, which is Zgil (yz - @;)2 \\It indicates the smallest possible sum of squared

residuals is 677.753.

Sum of Squares Total (S’ST) is 2659.667, which is E}il (yi — 5)2. \\It measures the amount of variation we can see in the
dependent variable.

Note that SST = SSR+ SSE

The intercept estimator a is -60.7461

The coefficient estimator b is 3.2157

The regression line (line of best fit) is therefore defined as: y = —60.7461 + 3.2157 -



Question 5: (0 points)

Interpretation of Simple Regression Equation

We return to the interpretations of simple regression equation with some key points.

First, in most cases the data available to run a regression will be sample data. Therefore, the values of a and b that describe the line
of best fit, are sample estimates of some unknown population parameters (usually labeled, e and ).

Second, note that b is the slope of the fitted line, 1} = a + bzx; i.e., the derivative of 3} with respect to x:
b=dyj/dz
and measures the increase in ¥ for a unit increase in z. For the height-weight example, the regression line is defined as
y = —60.7461 + 3.2157 x

We know that when we interpret regression results, we should be aware of the units in which the dependent and explanatory variables
are measured.

In the Height-Weight example, the explanatory variable (Height, ) is measured in inches (1 inch = 2.54 cm) and the dependent
variable (Weight, y) is measured in pounds (1 pound = 1 Ibs = 0.454 kg).

g = —60.7461+3.2157 x|
Weight, in pounds Height, in inches

With this knowledge, the interpretations of b = 3.2157 are

« "The expected weight () increases by 3.2157 pounds for every height increase of 1 inch."
« "On average weight () increases by 3.2157 pounds for every height increase of 1 inch."

Interpreting the intercept only makes sense if the value of x = 0 is a sensible value and inside the sample of values of x. In this
Height-Weight example, a = —60.7491 and it means that if someone has a height of 0 inches then we would expect the person to
have a weight of -60.7491. This does not make any sense here.

In addition, we know that transformations of data can affect the above summary measures. Originally, height is measured in inches (1
inch = 2.54 cm) and our original model is

Weight[lbs]; = o + 8 Height[in|; + €;
If the height is measured in centimeters then the centimeter model is

Weight[lbs]; = v+ 6Height[cm]; + v;
Weight[lbs|; = v+ & - 2.54 - Heightlin]; + v;

where 8 = 2.54 - 4. And indeed, the original coefficient estimated (in the inches model) is 2.54 times larger than that estimated in the
centimeter model.






Question 6: (1 point)

Statistical Inference: Hypothesis Tests and Confidence Intervals

Now that we have developed the coefficient estimators, we are ready to perform inference on the population model parameters. The
basic approach follows that developed in hypothesis test and confidence interval. We use the estimated parameters to test
hypotheses on the unknown population parameters or alternatively we calculate confidence intervals. We do that as we are typically
interested in the unknown population parameters and not the particular sample parameter estimates.

Hypothesis Tests

The true population regression line is
y; = a+ Bz, +¢;

We obtain sample estimates for the unknown population parameters o and 3. The sample estimates are a and b which then define
the sample regression line

gji:a—I—bxi

As usual we recognise that a different sample would have given us different sample estimates. This is why we need to use statistical
inference techniques.

In applied regression analysis, we first usually wish to know if there is a relationship. In the regression model we see that if 3 is 0, then
there is no linear relationship between X and Y. To determine if there is a linear relationship, we can test the hypothesis

versus

It turns out that inference on regression coefficients works very much like inference on a population mean with unknown population
variance. In that case we used a T’ test

this test statistic was ¢ distributed with n — 1 degrees of freedom if the population distribution of the error terms was normal. If it was
not normal then we could approximate the distribution of T" with a standard normal distribution if the sample size was big enough to
invoke a CLT.

In the context of this simple regression the test statistic is defined as

where the test statistic is distributed according to a Student’s t distribution with (n — 2) degrees of freedom. This is a bit different from
what you have studied in hypothesis test section. Degree of freedom is (n — 2) instead of (n — 1) because the simple regression
model uses two estimated parameters, a and b, instead of one (X when we are testing for ). SE (b) represents the standard error of
slope coefficient b. Here we will not provide any detail on how to calculate this, we will rely on EXCEL (or any other software) to
calculate this. In the image below you can see where to find the standard errors SE(a) = 39.8135 and SE(b) = 0.5947.



SUMMARY OUTPUT

Regression Statistics
Multiple R 0.86323443
R Square 0.74517369
Adjusted R Sc 0.71969106
Standard Errc  8.2325758

Observations 12
ANOVA

df SS MS F Significance F
Regression 1 1981.913623 1981.91362 25.2424157 0.00029818
Residual 10 677.7530435 67.7753043
Total 11 2659.666667

Standard Error t Stat P-value Lower 95%  Upper 95% Lower 95.0% Upper 95.0%

Intercept -60.746087 N398135]

2824 -1,52576498 0.15805315 -149.456156 27.9639822 -149.456156 27.9639822
51397 5.4076257 0.00029818 1.89068629 4.54061805 1.89068629 4.54061805

946

Height(inche: 3.21565217

Above we indicated that we want to find if there is a linear relationship, say if 3 is 0. In general, we can test for any specific values

Bo-

o To test the null hypothesis Hyy : 8 < 3 against the alternative H 4 : 8 > f3 the decision rule is as follows:

Reject Hy if t = >t

-
SE (b) n—2,o
o To test either null hypothesis Hy) : 8 > () against the alternative H 4 : 8 < f3; the decision rule is as follows:

— <t
SE(b) — "2
« To test the null hypothesis H(y : 8 = f3) against the alternative H 4 : 8 # f the decision rule is as follows:

Reject Hy if t =

. ._b-8 _b-
Reject H(y if t = SE_[b] > tnf2’a/2 ort = SE_[b] < tn—2,a/2

Hypothesis tests could also be performed on the equation constant, a follow the same logic and we would use the following t-test

.
~ SE(@) "2

To facilitate the application of inference to regression results, these are often presented as follows:

g = —60.7461 + 3.2157 -z
(39.8135)  (0.5946)

The standard errors of the coefficient estimates are shown in parenthesis underneath the respective sample estimate.

Let's test the hypothesis that, on average the, an additional inch of height increases weight by not more than 3 pounds at
a = 0.05.

HA :Bf>3
o b—Py - . . . o
The test statisticis T' = SEb ~ tn—2' The decision rule is to reject HO if the sample test statistic is greater than 1.812 (from

the t-table with 10 degrees of freedom).

32157 -3

= 0.362
0.5946 03627




As the test statistic is not larger than the critical value the null hypothesis is not rejected. The sample does not provide sufficient
evidence to reject H.

Test the hypothesis that, on average the, an additional inch of height increases weight by not more than 2 pounds at « = 0.01.

Hoﬂ
Hy:B

The test statistic is:

@T = gE—(ﬂl?) ~t, 1
b)T = g;—(ﬁl?) ~t, 9
©T = % ~ip—2
@7 = g;_fbo) ~ N(0,1)
)T = ;;Ti)% ~t, 9
Decision Rule:
Reject if is than

The sample test statistic is
t =

As the test statistic is not larger than the critical value the null hypothesis is not rejected. The sample does not provide sufficient
evidence to reject Hy at o = 0.01.



Question 7: (1 point)

Confidence Interval

You may not be interested in actually testing a particular hypothesis but merely to communicate that your sample estimate will not tell
you exactly what the unknown population parameter is. The tool of choice is to present a confidence interval, say, for the slope
coefficient 3 of the population regression line. A 100(1 — a)% confidence interval for the population regression slope 3 is given by:

lesey] =bEt, 9 4/2SE[
where tn—2,a/2 is the number for which
Pty 9> tn—2,a/2) =a/2

and the random variable th_9 follows a Student'’s t distribution with (n — 2) degrees of freedom. As in the case of the hypothesis
test for a regression coefficient, the degrees of freedom is determined by the number of observations minus the number of estimated
coefficients, here 2.

Excel's regression output for the Height-Weight example, is replicated below with annotations.

SUMMARY OUTPUT

REQFESSfOﬂ Statistics
MultipleR  0.863234

R Square 0.745174
AdjustedRSc 0.719691| , _ a-B _ —60.7461-0 _ . c,q o0
Standard Erro 8.232576 SE[a] 3981353 [ey €] = b+ tnsu2SE[b]
Olrervations 12 =3.215652 % ty;_5 502 * 0.594651
= 3.215652 + 2.228x%0.594651
ANOVA
df 58 MS F Significance F
Regression 1 1981.914 [1981.914 29.24242 0.000298182
Residual 10 677.753 | 67.7753
Total 11 2659.667

Coefficientandard Err | tStat  P-value Lower 95% Upper 95%ower 95.09pper 95.0%
Intercept -60.7461 39.81353 "-1.52576 0.158053 -149.4561561 27.96398 -149.456 27.96358
X Variablel 3.215652 0.594651 $5.407626 0.000293] 1.890686294 4.540618 | 1.890686 4.540618

_ b—f _ 3.215652-0

T SE[b] 0594651 =aAlTae

From that regression output you get all the ingredients you need to calculate hypothesis tests on and confidence intervals for the
unknown population parameters. In fact, by default the output does provide a particular hypothesis test and a particular confidence
interval. The hypothesis test provided is that of HO : B = 0 against HA : B # 0 (or the equivalent for ) and a 95% confidence
interval.

Note that the t-statistics and the p-values are specific to the Hj : B = 0 against H 4 : B # 0 test, but you also have all the
ingredients you would need to calculate a hypothesis test with a different null hypothesis or a different confidence interval.



Let's calculate a 99% confidence interval for S.

b t, 5 4/25E[)

3.2156 £ 3.169-0.5947 = 3.2156 £+ 1.8846
= [1.3311,5.1003]

Calculate a 80% confidence interval for .

= : }

Note that the 80% confidence interval does not contain 0. This is equivalent to the the p-value being smaller than 20% and hence we
would reject a two-sided hypothesis test with null hypothesis Hy : a = 0 at = 0.2,



Question 8: (0 points)

Multiple Regression

So far, we developed simple regression as a procedure for obtaining a linear equation that predicts a dependent or endogenous
variable as a function of a single independent or exogenous variable for example, weight as a function of height. However, in many
situations, you would want several explanatory variables to jointly influence a dependent variable. Multiple regression enables us to
determine the simultaneous effect of several independent variables on a dependent variable using the least squares principle.

Many important applications of multiple regression occur in business and economics. These applications include the following:

o The quantity of goods sold is a function of price, income, advertising, price of substitute goods, and other variables.

o Salary is a function of experience, education, age, and job rank.

o Capital investment occurs when a business person believes that a profit can be made. Thus, capital investment is a function of
variables related to the potential for profit, including interest rate, gross domestic product, consumer expectations, disposable
income, and technological level.

Business and economic analysis has some unique characteristics compared to analysis in other disciplines. Some natural scientists
work in a laboratory, where many—but not all—variables can be controlled. If you wanted to figure out what the impact of one variable
is you could vary that one (and keep all others constant) and then observe the impact these changes have on an outcome variable. In
contrast, the economist’s and manager’s laboratory is the world, and conditions cannot be controlled. Thus, we need tools such as
multiple regression to estimate the simultaneous effect of several variables. Multiple regression as a “lab tool” is very important for the
work of managers and economists.

The "miracle" of multiple regression is going to be that it will be able to "partial" out effects of individual explanatory variables.

Model Specification

Model specification includes selection of the explanatory variables and the functional form of the model. We return to the Height-
Weight example but we will discuss more than one factor this time. We previously specified:

Yy, =a+p z; + €
Weight Height Other Factors

In a simple linear equation we model the effect of all other factors to be part of the random error term, labeled as €;- However, some
factors in error term could be measured as well so we can move them out from the error term and include them as explanatory
variables. As we have discussed, weight could be affected by gender.

Linear regression assumes that the numerical amounts in all independent, or explanatory, variables are meaningful data points.
However, sex is a binary categorical variable (this is mainly true, sex referring to biological attributes. Gender identification used to be
modelled as a binary variable as well, but today there is a better understanding that the gender people identify as should not be
modelled as a binary variable only). Regression analysis requires numerical values to work with and therefore sex has to be coded.
Categorical variables with two categories is coded as a dummy variable. A dummy variable is a variable created to assign a numerical
value to the levels of the categorical variable. Here we will define such a variable, called "male" which takes the value 1 if the
individual is a male and O if it is not. Here we have a categorical variable which takes one of two categories and we needed one
variable to code this up. In general, if you have a categorical variable with k categories then you need k — 1 categories to code these

up.

This would lead us to specify a multiple regression model:



yp =atf zy; +Phy g + €
Weight Height Male Other Factors

Now we have an intercept coefficient (o) and two slope coefficients, 51 and 52 which relate to the Height and Male variables
respectively. These are all unknown population coefficients.

The following table shows the data with the sex and the derived male variable.

Weight(Y, pounds) Height(inches) Sex male

155 70 Female 0
150 63 Female 0
180 72 Male 1
135 60 Female 0
156 66 Female 0O
168 70 Male 1
178 74 Male 1
160 65 Female 0
132 62 Female 0O
145 67 Female 0
139 65 Female 0O
152 68 Female 0



Question 9: (0 points)

Estimation

In general a researcher is interested in the unknown intercept coefficient () and two the two slope coefficients, ,81 and ,32. We will
use sample data to obtain sample estimates for these. Multiple regression coefficients are computed using estimators obtained by the
least squares procedure. This least squares procedure is similar to that presented in simple regression. However, the estimators are
complicated by the relationships between the explanatory Xz' variables.

The least squares procedure for multiple regression computes the estimated coefficients so as to minimise the sum of the residuals
squared. In this case, the sample estimated regression equation is

The residual is:
res; = Y; —Y; = Y; — (@ +b1@1; +bymg;) = y; —a—byzy; — boxo;.

Formally, we minimise SSE"

n n
— E : 2 _ E: 2
SSE = ' 17"68i = ‘ 1(y’L —a— blwh - b2$22)
1= 1=

To carry out the process formally, we use partial derivatives to develop a set of simultaneous equations that are then solved to obtain
the coefficient estimators. Fortunately, the complex computations are always performed using a statistical software such as EXCEL.
Our objective here is to understand how to interpret the regression results and use them to solve problems. You may learn more about
the actual magic that is going on in later units.



Question 10: (0 points)

Goodness of Fit
Similar to the simple regression model, we can develop a measure of the proportion of the variability in the dependent variable that
can be explained by the multiple regression model. The model variability can be partitioned into the components

SST = SSR + SSE

where these components are defined as follows:

12
Sum of Squares Total:SST = Z (y; — gj)2
i=1
12
Sum of Squares Regression:SSR = Z (@; - §)2
i=1
n n
Sum of Squares Error:SSE = Z reslz = Z (y; — ﬁl)2 = Z (y; —a—byzy; — b2m2i)2
1=1 i=1 i=1

This decomposition can be interpreted as follows:

total sample variability = explained variability + unexplained variability

The coefficient of determination, Rz, of the fitted regression is defined as the proportion of the total sample variability explained by the
regression

SSR SSE

2 _ oS5k . S5E
R_SST L SST

and it follows that

0<R%2<1



Question 11: (0 points)

Interpretation of Multiple Regression Equation

Note that the multiple regression coefficients typically change as you include additional explanatory variables. For instance, when we
estimated the simple regression with only height as an explanatory variable, the estimated coefficient for the height variable was
3.2156. In the multiple regression model, after including the male dummy variable, the estimated coefficient came out as 2.1073, so a
reduction of approximately 50% in this case. This will always happen if the two explanatory variables (as is the case here) are
correlated.

For multiple regression, we would interpret the coefficients as being the partial derivatives.
bl = 62}/6331

This is consistent with our usual idea that, as we increase z1 by one unit@ changes by bl' But importantly, now we also have to
specify that this is true if we leave z9 unchanged.

When we increase 9 by one unit and leave 7 unchanged, y changes by b2.

We return to the height-weight example, the estimated coefficients are identified in the EXCEL output. The regression line is defined
as

g = 9.9005 + 2.1073z¢ + 13.7051z,

Make use of the information of the units in which the dependent and explanatory variables are measured.
From above we know, Height (1 ) is measured in inches (1 inch = 2.54 cm) and the Weight (y) is measured in pounds (1 pound = 1
Ibs = 0.454 kg).

We know that when we interpret regression results, we should be aware of the units in which the dependent and explanatory variables
are measured. With this knowledge, the interpretations of by = 2.1073 are

» "The expected weight (7) increases by 2.1073 pounds for every height increase of 1 inch, if the other variable does not
change"
« "On average weight (3) increases by 2.1073 pounds for every height increase of 1 inch, if the other variable does not change"

You will note here we add the sentence "if the other variable does not change" for multiple regression. Sometimes you see the term
ceteris paribus ("other things being equal”) to express this. This can be abbreviated as "c.p.".

Again, note that the coefficient for height is 3.2157, which is clearly different from 2.1073 from the simple regression. This is because
we added the male dummy variable into the model and as height and male are correlated (males tend to be taller) the inclusion of the
male dummy variable will change the coefficient of height.

When interpreting the coefficients to dummy variables we need to be less mechanical. Before interpreting b2, let's look at the following
argument.

When To; = 0 (Female respondents), the regression specification simplifies to

Yi =a+bizy;



but when zg, = 1 (Male respondents),

i =a+biey;+byx1= a+by +byzy;

N——
constant

the constantis a + b2. We can illustrate the two regression lines in the following plot where the data are visually separated by sex
(Green = males, black = females). The fact that the two lines are parallel is enforced by the specification as we are estimating the
same slope coefficient (for height, zq ) for males and females.The vertical difference between the two lines is equivalent to b2.

glmale, y| female

180 +

160 1

140

120 1 L1

55 60 65 70 75 80

Regression lines of best fit for Males and Females

We see that the dummy variable shifts the linear relationship between y; and x1; by the value of the coefficient b2. In this way we
can represent the effect of shifts in our regression equation. With this knowledge, the interpretation of b2 = 13.7051 is the Male
weights are, on average, 13.7051 higher than Female. When dealing with dummy variables this is the correct way to interpret
regression coefficients.



Question 12: (1 point)

Statistical Inference: Hypothesis Tests and Confidence Intervals

We shall demonstrate how to use regression results to perform hypothesis tests and calculate confidence intervals.

Hypothesis Tests

Once you estimated a multiple regression model and obtained its regression output, performing inference on regression coefficients is
really not much different to performing inference on regression coefficients in a simple regression. Let's start by re-stating the
population regression model

Y; = a+ B2y + Bamo; + ¢

We obtain sample estimates for the unknown population parameters «, Bl and 32- The sample estimates are a, bl and b2 which
then define the sample regression line

y=a-+ ()111712 + b2m21 +res;

As usual we recognise that a different sample would have given us different sample estimates. This is why we need to use statistical
inference techniques.

Let's say we wish to test whether the respondent's sex matters for explaining their weight. We would then want to test the hypothesis
Hy:89=0

versus
Hy:B9#0

It turns out that inference on regression coefficients works very much like inference on a population mean with unknown population
variance. We use a T test

by — By
b= V-3

SE (bo)
where the test statistic is distributed according to a Student’s t distribution with (n — 3) degrees of freedom. The degree of freedom
parameter is (n — 3) as our regression model uses three estimated parameters, a, bl and b2. SE (b2) represents the standard
error of slope coefficient b2. In general the degrees of freedom are calculated from 1 — k, where k is the number of estimated

coefficients. Recall that in this unit we do not cover how to calculate that standard error, we shall rely on EXCEL doing that work. Here
we show again the EXCEL regression output.



SUMMARY OUTPUT

Regression Statistics
Multiple R 0.90307762
R Square 0.81554919
Adjusted R Sc  0.77456013
Standard Errc 7.38299594

L

Coc \r‘d T34

N Gaudard

Observations 12 by l
EsHiwmalg Errors
ANOVA
df SS MS F Significance F

Regression 2 2169.08901 1084.5445 19.8967489 0.00049712
Residual 9 490.577661 54.508629
Total 11 2659.66667

Coefficients fstandard Error t Stat P-value Lower95%  Upper 35% Lower 95.0% Upper 95.0%
Intercept 9.9005235¢) 52.2329906| 0.18954541 0.85387124 -108.25871 128.059757 -108.25871 128.059757
Height(inches 2.107329848 0.80132226] 2.62981569 0.02736692 0.29461296 3.92004672 0.29461296 3.92004672
male 7.39586953) 1.85306961 0.09687655 -3.02555814 30.4356803 -3.02555814 30.4356803

rejectedat o = 0.1.

bo—
The test statisticis T' = 2—’320 ~

SEb,

Significance Level

~ 13.7051 -0
- 7.3959

Let's also calculate the p-value by referring to the t-distribution Table:

=1.

Let us test the hypothesis that sex does not matter when explaining weight. o = 0.1.

ty,—3, where ,6’20 is the hypothesised value for 62 in the null hypothesis. The decision

rule is to reject HO if the absolute value of the sample test statistic is greater than 1.833 (from the t-table with 9 degrees of
freedom, two tailed test!).

8531

You can also find that test statistic from the regression output as EXCEL (t Stat column), by default does test exactly the
hypothesis we are testing here). As the absolute value of the test statistic is larger than the critical value the null hypothesis is

weight.

1-Tailed: 0.1 0.05 0.025 0.01 0.005
2-Tailed 0.2 0.1 0.05 0.02 0.01

k 1| 3.078 6.314 12.706 31.821 63.657
9| 1.383 1.833 2.262 2.821 3.250

Our test statistic is between the values of 1.833 and 2.262 which relate to the (two tailed) p-values of 0.1 and 0.05. Therefore we
conclude that the p-value is between 0.05 and 0.1. If you were to use EXCEL to calculate this p-value you would use the following
formula "=2*(1-T.DIST(1.8531,9,TRUE))" which delivers a precise p-value of 0.0969.

At an a = 0.1 we conclude that the sample delivers evidence to reject the null hypothesis. Sex matters for explaining variation in




When comparing this procedure to the hypothesis test we performed for a simple regression you will realise that the only difference in
procedure was the degrees of freedom for the t-distribution. Otherwise everything was identical. Also, to conclude this section recall
that, as this example used a small sample, we have to assume that the error terms are normally distributed in order to be able to use
the t-distribution. When you use large sample sizes (justifying the application of a CLT) then we do not require this assumption.

Let us test the hypothesis that an additional inch of height, on average, adds two pounds of weight against the alternative that it adds
more than two pounds. Use o« = 0.01.

Hy by

The test statisticis T' = m ~t where 310 is the hypothesised value for 81 in the null hypothesis
~ " SEby dof: 10 yp 1 ypP :

What are the degrees of freedom for the t-distribution for this test?

dof =

The decision rule is to reject HO if the value of the sample test statistic is than 2.821.

The test statistic is
t=

What is the test's p-value?
(a) p-value > 0.1
(b)0.1 > p-value < 0.05
(c) 0.05 > p-value < 0.01

(d) p-value < 0.01



Question 13: (1 point)

Confidence Interval

Presenting uncertainty about estimated coefficients we turn to confidence intervals. When we revisited hypothesis testing we realised
that the only difference to hypothesis testing from a simple regression was the degrees of freedom. In fact the simple regression was
just a special case of the multiple regression case. If you calculate the degrees of freedom as 12 minus the number of estimated
coefficients you will get it right in any case.

The same applies to the calculation of confidence intervals. As long as you remember how to get the degrees of freedom this works
exactly as in the case of simple regression. Let us calculate a 99% confidence interval for 52 the coefficient for the male variable.

[CL, CU} = b2 + tn_37a/2SE [bz}
Substituting what we get from the regression output we obtain

13.7051 + 3.250 - 7.3959 = 13.7051 + 24.0366 = [—10.3315,37.7416]

Calculate a 95% confidence interval for ,31 the coefficient for the height variable.

lerser] = +

The sample confidence interval is: | , ]




Question 14: (0 points)

Worked Example and Outlook

Regression analysis is the workhorse technique of empirical economics. It is the swiss-army knife of statistical techniques. While
regression analysis as it is presented here is fairly straightforward, many more complicated statistical techniques are either variations
on linear regression models or use linear regression as an ingredient. So knowing regression analysis will carry you far.

We conclude this with a worked example of multiple regression analysis. This video provides a work-through a multiple regression
analysis. It uses this dataset (https://manchester.mobius.cloud/web/Econ1007011/Public_Html/Countrylndicators_2019.csv
(/web/Econ1007011/Public_Html/Countrylndicators_2019.csv)) of country indicators from Gapminder (https://www.gapminder.org/).

Multiple Regression Example in EXCEL




