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1 Warming-up - Monty Hall problem

You are on a game show, being asked to choose between three doors. Behind one door is a car

and behind the others are goats. You choose a door, say Door 1. The host, Monty Hall, picks

one of the other doors, which he knows has a goat behind it, and opens it, showing you the

goat. (You know, by the rules of the game, that Monty will always reveal a goat.) Monty then

asks whether you would like to switch your choice of door to the other remaining door.

The big question: assuming you prefer having a car more than having a goat, do you choose

to switch or not to switch?

Figure 1: Monty Hall problem

The solution is that switching will let you win twice as often as sticking with the original choice,

a result that seems counter-intuitive to many. In the following, we will introduce conditional

probability and Bayes’ Theorem, which give us a way to explain this result.



2 Conditional Probability

An important consideration in the development of probability is that of conditional probability.

This refers to the calculation of updating probabilities in the light of revealed information. For

example, insurance companies nearly always set their home contents insurance premiums on

the basis of the postcode in which the home is located. That is to say, insurance companies

believe the risk depends upon the location; i.e., the probability of property crime is assessed

conditional upon the location of the property. (A similar calculation is made to set car insurance

premiums.) As a result, the premiums for two identical households located in different parts of

the country can differ substantially.

� In general, the probability of an event, E, occurring given that an event, F , has occurred

is called the conditional probability of E given F and is denoted Pr(E|F ).

Let’s consider all young people of the same age, say 23 years old. That will be approximately

your age after graduating from University. Apart from the intellectual challenge and pleasure

you get from studying. Many of you would be studying in order to improve your job market

prospect. Let us define the event F = a person has a University degree. Then we could think

of different types of events to describe job market success. Say that you have a job, or that

you have annual earnings above £30,000 or that you have a job that excites you. For now, let’s

stick with the event definition E = a person is in employment. You as a student are certainly

hoping that Pr(E|F ) > Pr(E|F̄ ).

As a preliminary to the main development, consider the simple experiment of rolling a fair die

and observing the number of dots on the upturned face. Then S = {1, 2, 3, 4, 5, 6} and define

events, E = {4} and F = {4, 5, 6}; we are interested in Pr (E|F ). To work this out we take F as

known. Given this knowledge the sample space becomes restricted to simply {4, 5, 6} and, given

no other information, each of these three outcome remains equally likely. So the required event,

4, is just one of three equally likely outcomes. It therefore seems reasonable that Pr(E|F ) = 1
3 .
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Figure 2: Conditional probability - dice example

We shall now develop this idea more fully, using Venn Diagrams with the implied notion of area

giving probability. Consider an abstract sample space, denoted by S, with events E ⊂ S and

F ⊂ S. This is illustrated in the following Figure. Eventually we will want to construct the

conditional probability, Pr (E|F ). Sticking with the above example that could be the probability

that you are employed at the age of 23, given that you have a university degree. Two important

areas used in the construction of this conditional probability are highlighted as a and b:

Figure 3: Conditional proability

In general, it is useful to think of Pr(E) as area(E)
area(S) ; and similarly for Pr(F ). The Pr(E ∩ F )

could equally be thought of as area(a)
area(S) . With this in mind, consider what happens if we are
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now told that F has occurred. Incorporating this information implies that the effective sample

space becomes restricted to S∗ = F , since F now defines what can happen. This now covers the

sample area a+ b. On this new, restricted, sample space an outcome in E can only be observed

if that outcome also belongs to F , the restricted sample space S∗. And this only occurs in area

a which corresponds to the event E ∩ F . Thus the event of interest now is E∗ = E ∩ F , as

defined on the restricted sample space of S∗ = F .

In order to proceed with the construction of the conditional probability, Pr (E|F ), let area(S) =

z. Then, since the ratio of the area of the event of interest to that of the sample space gives

probability, we have (on this restricted sample space):

Pr(E|F ) =
area (E ∩ F )

area (F )

=
a

a+ b

=
a/z

(a+ b) /z

=
Pr (E ∩ F )

Pr (F )
,

We have shown, for this example how a conditional probability can be expressed as a function

of the joint probability Pr (E ∩ F ) and the probability Pr (F ). We call the probability Pr (F ),

which is neither a joint probability nor a conditional probability, a marginal probability. This

is a profound result and should be formulated in more general terms:

Definition. The probability that E occurs, given that F is known to have occurred, gives the

conditional probability of E given F . This is denoted Pr(E|F ) and is calculated as

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )

and from the axioms of probability will generate a number lying between 0 and 1, since Pr(F ) ≥
Pr(E ∩ F ) ≥ 0.

Example. A Manufacturer of electrical components knows that the probability is 0.8 that an

order will be ready for shipment on time and it is 0.6 that it will also be delivered on time.

What is the probability that such an order will be delivered on time given that it was ready for

shipment on time?

Let R = READY, D = DELIVERED ON TIME. Pr(R) = 0.8, P r(R∩D) = 0.6. From this we

need to calculate Pr(D|R), using the above formula. This gives, Pr(D|R) = Pr(R∩D)/Pr(R) =

6/8, or, 75%.

If we re-arrange the above formula for conditional probability, we obtain the so-called multipli-

cation rule of probability for intersections of events:
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2.1 Multiplication rule of probability

The multiplication rule of probability can be stated as follows:

Pr(E ∩ F ) = Pr(E|F )× Pr(F ) (1)

It is equally true that

Pr(E ∩ F ) = Pr(F |E)× Pr(E) (2)

Note that for any two events, E and F , (E ∩F ) and (E ∩ F̄ ) are mutually exclusive; they were

areas a and b respectively in the above Venn diagram. Also, E = (E ∩ F ) ∪ (E ∩ F̄ ); this has

been seen before. So the addition rule and multiplication rule of probability together give:

Pr(E) = Pr(E ∩ F ) + Pr(E ∩ F̄ )

= Pr(E|F )× Pr(F ) + Pr(E|F̄ )× Pr(F̄ ).

This is an extremely important and useful result, in practice, as we shall see shortly.

The following examples refer to a jar with different coloured marbles. So what you should be

picturing is something like the following:

Example. A jar contains 6 red marbles and 4 blue marbles. Two marbles are drawn from the

bag, without replacement. What is the probability that both marbles are blue? 2/15

Here are the steps:

Step 1: Label your events A and B. Let A be the event that marble 1 is blue and let B be the

event that marble 2 is blue. You want to calculate Pr(B ∩A) = Pr(B|A)× Pr(A)

Step 2: Figure out the probability of A. There are ten marbles in the bag, so the probability of

drawing a blue marble is Pr(A) = 4/10.

Step 3: Figure out the probability of B given the first marble was blue, Pr(B|A). There are nine

marbles left in the bag, and if the first marble was blue then there are only three left which are

blue. So the probability of choosing a blue marble Pr(B|A) is 3/9.
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Step 4: Multiply Step 2 and 3 together: (4/10) ∗ (3/9) = 2/15.

Example. A jar contains 4 red marbles, 4 green marbles, and 5 blue marbles. If we choose a

marble, then another marble without putting the first one back in the jar, what is the probability

that the first marble will be blue and the second will be green? 5/39

Hint:

Step 1: The probability of event A happening, then event B, is the probability of event A

happening times the probability of event B happening given that event A already happened,

Pr(B∩A) = Pr(B|A)×Pr(A). In this case, event A is picking a blue marble and leaving it out.

Event B is picking a green marble in the second draw.

Step 2: Let’s take the events one at at time. What is the probability that the first marble chosen

will be blue?

Step 3: There are 5 blue marbles, and 13 total, so the probability we will pick a blue marble is

Pr(A) = 5/13.

Step 4: After we take out the first marble, we don’t put it back in, so there are only 12 marbles

left.

Step 5: Since the first marble was blue, there are still 4 green marbles left.

Step 6: So, the probability of picking a green marble after taking out a blue marble is Pr(B|A) =
4/12.

Step 7: Therefore, the probability of picking a blue marble, then a green marble is (5/13)(4/12) =

5/39.

2.1.1 Additional resources

Khan Academy

� Another application of this rule [https://www.khanacademy.org/math/probability/i

ndependent-dependent-probability/dependent_probability/v/dependent-proba

bility-example-1]

2.2 Statistical Independence

If the knowledge that F has occurred does NOT alter our probability assessment of E, then E

and F are said to be (statistically) independent. In this sense, F carries no information about

E.

Definition. Formally, E and F are independent events if and only if

Pr(E|F ) = Pr(E)
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which, in turn is true if and only if

Pr(E ∩ F ) = Pr(E)× Pr(F ).

As you can see, the multiplication rule of probabilities, in the case of independent events, is

Pr(E ∩ F ) = Pr(E)× Pr(F ) whereas in general it is Pr(E ∩ F ) = Pr(E)× Pr(F |E).

This concept of independence is of enormous importance in practice. Consider the case of

lung cancer and its connection to smoking (apologies to all smokers for being picked upon

here). The first connection between smoking and lung cancer was made in the 1920s. However,

for many decades, with the tobacco industry spending a lot of money and effort to convince

people that there was no connection between the two, there was no certainty about a causal

connection. In other words, the tobacco industry claimed that the two events are independent,

or Pr(Cancer|Smoking) = Pr(Cancer| ¯Smoking) = Pr(Cancer). It was then the task of

epidemiologists to show otherwise. This was famously and comprehensively achieved by the

[http://en.wikipedia.org/wiki/British_Doctors_Study British Doctors Study ].

In the smoking - lung cancer example the question is really whether smoking causes lung

cancer. It has now been established that this is indeed the case. That however, is not the same

as the two events being dependent. There can be statistical dependence between two events

without there being such a causal relationship. For instance, the number of umbrellas being

sold in a year could well be positively related to the size of the grain harvest in a country. So,

statistically these two variables are likely to be dependent. But that does not imply that people

buying more umbrellas increases the grain harvest. The reason the two are related to each other

is that they are both dependent on a common third variable, the weather. Questions of causality

are super important in economics and the sub-field of econometrics thinks very carefully about

methods that can be used to establish causal relationships (which are a sub-group of correlation

relationships). In other words: not all correlations do correspond to causal relationships.

Example. Two fair dice are rolled. Use a probability tree diagram to determine the probability

of obtaining:

(a) two sixes,

(b) no sixes,

(c) exactly one six.

Before you start calculating, think about whether the first and the second roll of the dice are

independent.
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six

not six

six

not six

six

not six

P (six) = 1/6

P (six, six) = P (six)× P (six) = 1/6× 1/6 = 1/36

P (not six) = 5/6

P (six, not six) = P (six)× P (not six) = 1/6× 5/6 = 5/36

P (six) = 1/6

P (not six, six) = P (not six)× P (six) = 5/6× 1/6 = 5/36

P (not six) = 5/6

P (six) = 1/6

P (not six) = 5/6 P (not six, not six) = P (not six)× P (not six) = 5/6× 5/6 = 25/36

(a) two sixes: P (six, six) = 1/36

(b) no sixes: P (not six, not six) = 25/36

(c) exactly one six: P (six, not six) + P (not six, six) = 5/36 + 5/36 = 10/36

You would have possibly solved the above example without having been aware of the concept of

independence. But once you understand independence we can reformulate the above. Let D16

be the event for the first dice roll showing a 6 and D26 for the second dice roll showing a 6.

After recognising that the outcome of the second dice roll will be independent of the outcome

of the first dice roll, the probability for two sixes can now be calculated using the multiplication

rule specialised for independent events:

P (D16 ∩D26) = P (D16)× P (D26) = (1/6)× (1/6) = 1/36

Equally, you can calculate the probability to not have any sixes:

P (D11−5 ∩D21−5) = P (D11−5)× P (D21−5) = (5/6)× (5/6) = 25/36

For the probability to get exactly one six we will, as in the example above have to combine the

two ways in which this can happen (D16 and then D21−5 or D11−5 and then D26).

P (D16 ∩D21−5) + P (D11−5 ∩D26) = P (D16)× P (D21−5) + P (D11−5)× P (D26)

= (1/6)(5/6) + (5/6)(1/6) = 10/36
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Example. On a Roulette Table you have numbers 0 to 36. Of the numbers 1 to 36 18 numbers

are red and another 18 are black. The number 0 is white. You can assume that consecutive

spins (S) of the roulette wheel produce independent outcomes. Calculate the probabilities for the

following events:

(a) One red and one black number in two spins, the order not being important.

(b) Three black numbers in a row.

(c) The first spin producing a 0, followed by a red and then a black number.

(d) The first spin producing a 0, followed by one red and black where the order is not important.

SOLUTION:

(a) P (rb) = (P (S1b) × P (S2r)) + (P (S1r) × P (S2b)) = (18/37)(18/37) + (18/37)(18/37) =

0.4733

(b) P (S1b ∩ S2b ∩ S3b) = P (S1b)× P (S2 b)× P (S3 b) = (18/37)(18/37)(18/37) = 0.1151

(c) P (S10 ∩ S2r ∩ S3r) = P (S10)× P (S2 r)× P (S3 r) = (1/37)(18/37)(18/37) = 0.0064

(d) P (S10 ∩ rb) = P (S10)× P (rb) = (1/37)× 0.4733 = 0.0128

2.3 Bayes’ Theorem

One area where conditional probability is extremely important is that of clinical trials - testing

the power of a diagnostic test to detect the presence of a particular disease or infection. Suppose,

then, that a new test is being developed and let P = ‘test positive’ andD = ‘presence of disease’,

but where the results from applying the diagnostic test can never be wholly reliable. From the

point of view of our previous discussion on conditional probability, we would of course require

that Pr (P |D) to be large; i.e., the test should be effective at detecting the disease. However, if

you think about, this is not necessarily the probability that we might be interested in from a

diagnosis point of view. Rather, we should be more interested in Pr (D|P ), the probability of

correct diagnosis, and require this to be large (with, presumably, Pr(D|P̄ ) being small).

Note that in this section we are using Pr(A) to denote the probability that event A occurs,

where in previous sections we used P (A). Both notations are commonly found and you need to

be familiar with either. The reason why we switch on this occasion is as we are using an event

we define as P and hence we use Pr to represent the probability to avoid confusion.
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Here, what we are trying to attach a probability to is a possible ‘cause’. The observed outcome

is a positive test result (P ), but the presence or non-presence of the disease is what is of

interest and this is uncertain. Pr(D|P ) asks the question ‘what is the probability that it is the

presence of the disease which caused the positive test result ’? Firstly, is Pr (D|P ) high or low?

Secondly, might there being something else (F ) which could offer a “better” explanation, such

that Pr (F |P ) > Pr (D|F ) ?)

The situation is depicted in the following Figure, in which there are two possible ‘states’ in

the population: D (depicted by the lightly shaded area covering the left portion of the sample

space) and D̄. It must be that D∪ D̄ = S, since any individual in the population either has the

disease or does not. The event of an observed positive test result is denoted by the closed loop,

P . (Notice that the shading in the diagram is relatively darker where P intersects with D.)

Figure 4: Bayes’ Theorem

How might we construct the required probability, Pr (D|P )? We start from the multiplication

rule, Pr (D ∩ P ) = Pr (D|P ) Pr(P ), and rearrange it as follows:

Pr (D|P ) =
Pr (D ∩ P )

Pr(P )

=
Pr(D ∩ P )

Pr(P ∩D) + Pr(P ∩ D̄)
,

since P (P ) = (P ∩D)∪ (P ∩ D̄), and these are mutually exclusive. From the multiplication rule

of probability, Pr (P ∩D) = Pr(P |D)× Pr(D), and similarly for Pr
(
P ∩ D̄

)
. Thus

Pr (D|P ) =
Pr (P |D)× Pr (D)

Pr (P |D)× Pr (D) + Pr(P |D̄)× Pr
(
D̄
) ,
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which may be convenient to work with since Pr (P |D) and Pr
(
P |D̄

)
can be estimated from

clinical trials and Pr (D) estimated from recent historical survey data. We sometimes call

probabilities like Pr(D) prior probabilities and probabilities like Pr (D|P ) posterior prob-

abilities. You can think of the prior and posterior representing before and after the revealing

of the information P .

This is all pretty abstract,so let’s work through an example.

Example. Let’s assume that you are worried about having contracted Covid. You know that at

the time around 10% of the population have Covid. This number comes from a regular survey

undertaken by the Office for National Statistics. We also call this the prevalence of the disease,

P (D) = 0.1. You want to take a test. You did your research about the test and found that,

from clinical tests, it is known that the test has an accuracy of 95%. In this context this implies

that, if you do have disease, then there is a 95% probability that the test will tell yo that you are

positive. Also, if you do not have the disease the test will also tell you, with probability of 95%

that you are not positive (or in 5% of cases it would tell a non-infected person that they are

positive). These two probabilities do not need to be identical (see example below). In statistical

language we know that Pr (P |D) = 0.95 and Pr
(
P |D̄

)
= 1− 0.95 = 0.05.

After doing all this research you actually get to take the test. The test tells you that you are

positive. Given all this information, what is the probability that you do have Covid? 100%?

95%? Neither of these, the probability is significantly lower. There are two ways how you could

have ended up testing positive. Either you have Covid and, correctly tested positive, or you do

not have Covid and the test erroneously showed a positive result. So, given you did test positive,

what is actually the probability that you have Covid, Pr(D|P ). Just to benchmark this. If you

just had not tested, the probability would be 10%, the population prevalence.

This is where the previous result comes in useful, as we actually do have all the terms required:

Pr (D|P ) =
Pr (P |D)× Pr (D)

Pr (P |D)× Pr (D) + Pr(P |D̄)× Pr
(
D̄
)

=
0.95× 0.1

0.95× 0.1 + 0.05× 0.9
= 0.6786

So, this is certainly much less than certainty. But you should also note that after the positive

test the probability that you have Covid increased substantially from 10% (before the test) to

almost 68%.

Example. The context if this exercise is the same as in the above example. But now the

probabilities are:

� The disease prevalence is 5%.
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� If you have the disease, the probability of the test showing as positive is 90%.

� If you do not have the disease, the probability of the test showing as positive is 15%.

What are Pr(D|P ) and Pr(D|P̄ )?

SOLUTION:

Pr (D|P ) =
Pr (P |D)× Pr (D)

Pr (P |D)× Pr (D) + Pr(P |D̄)× Pr
(
D̄
)

=
0.90× 0.05

0.90× 0.05 + 0.15× 0.95
= 0.2400

Pr
(
D|P̄

)
=

Pr
(
P̄ |D

)
× Pr (D)

Pr
(
P̄ |D

)
× Pr (D) + Pr(P̄ |D̄)× Pr

(
D̄
)

=
0.10× 0.05

0.10× 0.05 + 0.85× 0.95
= 0.0062

The two probabilities you calculated in this last example are very useful to understand how the

test result updates your information. Before you test you start out with the the population

prevalence of 5% as the probability that you have the disease. Once you receive the test result

that probability increases if the test result is positive, P (D|P ) > P (D), or decreases if the test

result is negative, P (D|P̄ ) < P (D). But such a test does not provide certainty.

This sort of calculation is an example of Bayes’ Theorem. Of course, we may have to consider

more than two possible causes, and the construction of the appropriate probabilities is as follows.

1. Consider a sample space, S, where E ⊂ S and A,B,C are three mutually exclusive events

(possible causes), defined on S, such that S = A ∪ B ∪ C. In such a situation, A,B and

C are said to form a partition of S.

Bayes’ Theorem states that:

Pr(A|E) =
Pr(E|A)× Pr(A)

{Pr(E|A)× Pr(A)}+ {Pr(E|B)× Pr(B)}+ {Pr(E|C)× Pr(C)}
.

2. And, more generally, consider a sample space, S, where E ⊂ S and F1, F2, ..., Fk are k

mutually exclusive events (possible causes), which form a partition of S : S =
⋃k

j=1 Fj .

Bayes’ Theorem then states that:

Pr(Fj |E) =
Pr(E|Fj)× Pr(Fj)∑k

s=1 {Pr(E|Fs)× Pr(Fs)}
.
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From the above formula, you should be able to satisfy yourself that
∑k

j=1 Pr (Fj |E) = 1. If this

is not at first clear, consider case (1) and show that Pr (A|E) + Pr (B|E) + Pr (C|E) = 1. The

reason for this is that since A,B and C form a partition of S, they must also form a partition

of any event E ⊂ S. In the above conditional probabilities, we are regarding E as the restricted

sample space and therefore the probabilities assigned the mutually exclusive events (A,B,C)

which cover this (restricted) sample space, E, must sum to 1.

Example. : Box A contains 2 red balls. Box B contains 1 red and 1 white ball. Box A and

Box B are identical. If a box is selected at random and one ball is withdrawn from it, what is

the probability that the selected box was A if the ball withdrawn from it turns out to be red?

Let A be the event of selecting Box A and R the event of drawing a red ball. Require Pr(A|R).

Pr(A|R) = Pr(A ∩R)/Pr(R);

Pr(A ∩R) = Pr(A)Pr(R|A) = (1/2)× 1 = 1/2.

And,

Pr(R) = Pr(A ∩R) + Pr(Ā ∩R)

= Pr(A)× Pr(R|A) + Pr(Ā)× Pr(R|Ā)

= (1/2) + (1/2)× (1/2)

= 3/4.

Therefore, Pr(A|R) = (1/2)/(3/4) = 2/3.

Now we come back to the Monty Hall problem which has been introduced at the beginning.

Recall where we ended up in the show. You had selected one door, say Door 1, hoping that you

would win a car if that was hidden behind that door. The show’s host opened one of the other

doors revealing a goat (here Door 3). Being an avid viewer of the show you know that the host,
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at that stage would never actually open the door with the car. Should you switch from Door 1

to 2, or does it not matter for your chances of winning a car?

As indicated at the beginning, switching will let you win twice as often as sticking with the

original choice. We now have the statistical tools to investigate why this is the case. We could

use a table to explicitly list out all the possible outcomes, and count how often you get the car

if you stay versus switch. Without loss of generality, suppose your selection was door 1. Then

the possible outcomes can be seen in this table:

In two out of three cases, you win the car by changing your selection after one of the doors

is revealed. This is because there is a greater probability that you choose a door with a goat

behind it in the first go, and then Monty is guaranteed to reveal that one of the other doors has

a goat behind it. Hence, by changing your option, you double your probability of winning.

It is, admittedly, not straightforward to follow this logic and therefore we will appreciate the

formal argument using Bayes’ theorem. The version you see below ids only one of several other

ways in which you could see the problem through the Bayes’ Theorem lens. But all different

perspectives will lead you to the same outcome. We argued earlier that Bayes’ theorem allows us

to think how new information allows us to update probabilities using the new evidence. When

you chose Door 1 initially you knew that the probability of the car being behind Door 1 was

1/3, Pr(D1) = 1/3, and also Pr(D2) = Pr(D3) = 1/3.

Now we describe how you can update the probability Pr(D1) with the new information obtained

after the quizmaster opened Door 3, event = OD3. The following assumes that you have chosen

Door 1. Equivalent considerations would apply if you had chosen doors 2 or 3. The Bayes

formula adjusted to the new event names looks as follows:

Pr (D1|OD3) =
Pr (OD3|D1)× Pr (D1)

Pr (OD3|D1)× Pr (D1) + Pr(OD3|D2)× Pr (D2) + Pr(OD3|D3)× Pr (D3)

We already know Pr(D1) = Pr(D2) = Pr(D3) = 1/3. Further we need:

� Pr(OD3|D1) is the probability that Monty shows Door 3, given (D1), i.e. that the car

is behind Door 1. That probability would 1/2 as Monty has the choice between Doors 2

and 3 as both hide a goat.

� Pr(OD3|D2) is the probability that Monty shows Door 3, given that there is a car behind

Door 2. As you have chosen Door 1 Monty cannot open Door 1 and he also cannot open
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Door 2 as that is where the car is. Therefore he is certain to open Door 3, Pr(OD3|D2) =

1.

� Pr(OD3|D3) is the probability that Monty shows Door 3, given that the car is behind

Door 3. Monty would never do this, as he does not want the game to end at this stage.

Therefore Pr(OD3|D3) = 0.

Combining all of this information gives

Pr (D1|OD3) =
(1/2)× (1/3)

(1/2)× (1/3) + 1× (1/3) + 0× (1/3)
= 1/3

So the probability that the car is behind Door 1 has not changed at all through Monty’s act of

revealing a goat behind Door 3. At this stage you know that the car is not behind Door 3 and

therefore the only other possibility is that the car is behind Door 2. Logically the probability, at

this stage, that the car is behind Door 2 ought to be Pr(D2|OD3) = 2/3. This is what can be

somewhat unintuitive, but let’s update the initial Pr(D2) = 1/3 with the information provided

by the opening of Door 3, again using Bayes’s Theorem:

Pr (D2|OD3) =
Pr (OD3|D2)× Pr (D2)

Pr (OD3|D1)× Pr (D1) + Pr(OD3|D2)× Pr (D2) + Pr(OD3|D3)× Pr (D3)

=
1× (1/3)

(1/2)× (1/3) + 1× (1/3) + 0× (1/3)
= 2/3

Opening Door 3 has doubled the probability that the car is behind Door 2!!! Therefore, switching

to Door 2 is twice as likely to get you the car as staying with Door 1. You can repeat this

argument for any other initial choice of Door. You will always find that switching increases the

probability of you winning the car.

In this Section you learned that conditional probabilities are important to describe important

relationships in the society, such as the probabilities of contracting Covid conditional on being

vaccinated, the probabilities of cars being stolen depending on where they are parked and the

probabilities of having an interesting job, depending on what type of education you have. In

addition you learned that, using the incredibly important Bayes’ Theorem, you can solve rather

complicated probabilistic problems.

3 Additional resources

Khan Academy
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� A different example that intuitively leads to Bayes Formula [https://www.khanacadem

y.org/math/probability/independent-dependent-probability/dependent_proba

bility/v/introduction-to-dependent-probability]

� Should you switch the door? A classic problem. [https://www.khanacademy.org/math

/probability/independent-dependent-probability/dependent_probability/v/m

onty-hall-problem]

4 Footnotes
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