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1 Introduction

Previously we have learned how to calculate with probabilities in order to make sensible state-

ments concerning uncertain events, such as the probability of rolling a fair dice and getting

three ”6” in a row. This has assumed that we already know the probabilities with which cer-

tain events occur, here that the probability of rolling a ”6” in any particular roll of the dice

is 1/6. Then we learned how to calculate probabilities for related events (unions, intersections

and complements). The question we shall begin to address in the this section (discrete random

variables) and the next (continuous random variables) is how we might construct models which

assign probabilities in the first instance.

When we build models we will usually deal with numbers which describe outcomes even if the

original outcomes (of a random process) may not immediately be a number. A random variable

assigns a number to the outcome of an experiment. These outcomes depend on the random

outcome of a experiment. In the following picture you can see five examples of such random

variables (labelled by upper case letters) and a particular example outcome (labelled by lower

case letters).

We will soon see a more formal definition of what a random variable is, but if you keep these

examples in the back of your mind that formal definition will make more sense.

The outcome of the original experiment (rolling dice, flipping coins, choosing a person) is as-

sumed to be random, which implies that the experiment can take different outcomes. This

is where the ”random” in ”random variable” comes from. Understanding what the set of ex-

periment outcomes, and therefore outcomes of the random variable can be is the first step in

understanding random variables and their characteristics. In particular, understanding the pos-

sible outcomes will allow us to differentiate between discrete random variables (such as the coin

flip examples, or indeed the dice examples, where you have a finite number of outcomes) and

continuous random variables (such as the height of the person, assuming that you can measure

the height to arbitrary precision).



Figure 1: Definition of Random Variables.

The second element in fully characterising a random variable is to understand with which

probabilities certain outcomes can occur. This is done by the probability distributions of a

random variable. To fix ideas, and before we will become more formal, let’s actually state one

such probability distribution, the probability distribution for the random variable Z:
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p(z) =

p(Z = 0) = 0.5

p(Z = 1) = 0.5

Recall that Z = 0 represents the experimental outcome of ”tails” and Z = 1 of ”heads”. So

what this means is that the probability of both a heads and a tail is 50% as it should be for a fair

coin. In other words, the probability distribution tells us how likely the different experimental

outcomes are.

In this section we will talk about random variables and probability distributions in general and

a set of discrete random variables and their distributions in particular.

2 Random Variable

Hopefully you have already understood that a random variable assigns numerical values to

experimental outcomes. For our purposes, we can think of a random variable as having two

components:

� a label/description which defines the variable of interest

� the definition of a procedure which assigns numerical values to events on the appropriate

sample space.

Note that:

� often, but not always, how the numerical values are assigned will be implicitly defined by

the chosen label

� A random variable is neither RANDOM or VARIABLE! Rather, it is device which de-

scribes how to assign numbers to physical events of interest: “a random variable is a real

valued function defined on a sample space”.

� A random variable is indicated by an upper case letter (X, Y , Z, T , etc). The strict

mathematical implication is that since X is a function, when it is applied on a sample

space (of physical attributes) it yields a number

Just in case you didn’t realise yet, the above is somewhat abstract. Don’t forget that this, for

the example of random variable Z, merely implies that there is a function which maps ”heads”

to the value 1 and ”tails” to the value 0. You may remember that functions are mappings which

map from one space (the sample space) to the real line. Different experimental outcomes can

have the same value for the random variable (for example, both a TTHT and a HTTT coin toss

sequence both have an outcome of 1 as they both have one heads outcome).
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2.1 Examples of random variables

Let us list a few more examples of random variables

� Let X = ‘the number of HEADs obtained when a fair coin is flipped 3 times’. This

definition of X implies a function on the physical sample space which generates particular

numerical values. Thus X is a random variable and the values it can assume are:

X(H,H,H) = 3; X(T,H,H) = 2; (H,T,H) = 2; X(H,H, T ) = 2;

X(H,T, T ) = 1; X(T,H, T ) = 1; X(T, T,H) = 1; X(T, T, T ) = 0.

This is an example (as mentioned above) where two different outcomes in the sample space

(e.g. T,H,H and H,T,H) are mapped into the same number, here 2.

� Let the random variable Y indicate whether or not a household has suffered some sort

of property crime in the last 12 months, with Y (yes) = 1 and Y (no) = 0. Note that we

could have chosen the numerical values of 1 or 2 for yes and no respectively. However,

the mathematical treatment is simplified if we adopt the binary responses of 1 and 0.

� Let the random variable T describe the length of time, measured in weeks, that an unem-

ployed job-seeker waits before securing permanent employment. So here, for example,

T (15 weeks unemployed) = 15, T (31 weeks unemployed) = 31, etc.

Once an experiment is carried out, and the random variable (X) is applied to the outcome, a

number is observed, or realised ; i.e., the value of the function at that point in the sample space.

This is called a realisation, or possible outcome, of X and is denoted by a lower case letter, x.

In the above examples, the possible realisations of the random variable X (i.e., possible values

of the function defined by X) are x = 0, 1, 2 or 3. For Y , the possible realisations are y = 0, 1;

and for T they are t = 1, 2, 3, ....

The examples of X, Y and T given here all are applications of discrete random variables (the

outcomes, or values of the function, are all integers). Technically speaking, the functions X, Y

and T are not continuous.

2.2 Additional Resources

Khan Academy:

� A short introduction to the nature of random variables [https://www.khanacademy.or

g/math/probability/random-variables-topic/random variables prob dist/v/ra

ndom-variables]

4

https://www.khanacademy.org/math/probability/random-variables-topic/random_variables_prob_dist/v/random-variables
https://www.khanacademy.org/math/probability/random-variables-topic/random_variables_prob_dist/v/random-variables
https://www.khanacademy.org/math/probability/random-variables-topic/random_variables_prob_dist/v/random-variables


3 Discrete random variables

In general, a discrete random variable can only assume discrete realisations which are easily listed

prior to experimentation. Having defined a discrete random variable, probabilities are assigned

by means of a probability distribution. A probability distribution is essentially a function which

maps from x (the real line) to the interval [0, 1]; thereby generating probabilities.

Probability distributions come in two forms (each carrying the same information), the proba-

bility mass function (pmf) and the cumulative distribution function. (cdf) When we talk about

probability distributions for continuous random variable we will also have two representations

of the same information, but instead of a pmf we will then talk about a probability density

function (pdf).

3.1 Additional Resources

Khan Academy:

� Differentiate between discrete and continuous random variables [https://www.khanacad

emy.org/math/probability/random-variables-topic/random variables prob d

ist/v/discrete-and-continuous-random-variables]. The difference can indeed be

subtle!

3.2 Probability mass function (pmf)

The probability mass function (pmf) is defined for a DISCRETE random variable, X, only

and is the function:

p(x) = P (X = x), for all x.

Note that:

� We use p(x) here to emphasize that probabilities are being generated for the outcome x;

e.g., p(1) = P (X = 1), etc.

� Note that p(r) = 0, if the number r is NOT a possible realisation of X. Thus, for the

property crime random variable Y , with p(y) = P (Y = y), it must be that p(0.5) = 0

since a realisation of 0.5 is impossible for the random variable.

� If p(x) is to be useful, then it follows from the axioms of probability that,
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p(x) ≥ 0 and
∑
x

p(x) = 1

where the sum is taken over all possible values that X can assume.

� It follows from the previous point that 0 ≤ p(x) ≤ 1.

The last two points are only correct for discrete random variables and will have to be modified

for continuous random variables.

For example, when X = ‘the number of HEADs obtained when a fair coin is flipped 3 times’,

we can write that
∑3

j=0 p(j) = p(0) + p(1) + p(2) + p(3) = 1 since the number of heads possible

is either 0, 1, 2, or 3. Be clear about the notation that is being used here. p(j) is the probability

that j heads are obtained in 3 flips; i.e., p(j) = P (X = j) , for values of j equal to 0, 1, 2, 3.

This type of random variable is what will soon be introduced as a Bernoulli random variable.

But to complete the example here, we can already discuss the pmf here.

The only way in which we can get 0 HEADs is if the coin flips to TAIL all three times. The

probability of this is p(0) = 0.53 = 1/8. Don’t worry if that is not super obvious, it will soon

be explained. The only way in which we can get three HEADSs if it flips to HEAD three times

in a row, the probability of which is p(3) = 0.53 = 1/8. We are left with the case of 1 or two

HEADS. The probability for both of these is p(1) = p(2) = 3 · 0.53 = 3/8. This delivers the

following pmf :

p(x) =



p(0) = p(X = 0) = 1/8

p(1) = p(X = 1) = 3/8

p(2) = p(X = 2) = 3/8

p(3) = p(X = 3) = 1/8

Please confirm that this pmf meets all the four conditions above. For discrete probability

distributions the interpretation of these is straightforward. p(2) = 3/8 indicates that there

is a 37.5% probability that three fair coin flips end up with two HEADs. When we move to

continuous random variables we loose this straightforward interpretation.

The pmf tells us how probabilities are distributed across all possible outcomes of a discrete

random variable X; it therefore generates a probability distribution. A probability distribution

tells you how the probabilities distribute across all possible outcomes. We will encounter many

examples of this soon.

We will often encounter graphical representations of the pmf. The above example can be

graphically represented in a way which very much resembles a histogram, but not that this is
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not empirical frequencies, but the probabilities coming from a known probability distribution

of a random variable.

Figure 2: Probability mass function.

You can see in that image that there are four distinct values of X for which there is a positive

probability mass. You being able to see the distinct possible outcomes is a feature of a discrete

random variable. Especially when the random variable has many possible outcomes a graphical

representation of the pmf is very useful.

Example. Consider the experiment of tossing a fair coin four times. The random variable Q

counts the number of heads. You know the following probabilities: p(0) = p(4) = 1/16 and

p(1) = p(3) = 4/16.

What is p(3)? p(3) = 6/16

Hint: the sum of the probabilities for all possible outcomes.

What is p(6)? p(6) = 0

Hint: The outcome Q = 6 is not possible and therefore has a zero probability.
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3.3 Cumulative distribution function (cdf)

In the DISCRETE case the cumulative distribution function (cdf) is a function which cumu-

lates (adds up) values of p(x), the pmf. In general, it is defined as the function:

P (x) = P (X ≤ x);

e.g., P (1) = P (X ≤ 1). Note the use of an upper case letter, P (.), for the cdf, as opposed to the

lower case letter, p (.), for the pmf. In the case of a discrete random variable it is constructed

as follows:

Suppose the discrete random variable, X, can take on possible values x = a1, a2, a3, ..., etc,

where the aj are an increasing sequence of numbers (a1 < a2 < . . .). Then, for example, we can

construct the following (cumulative) probability:

P (X ≤ a4) = P (a4) = p(a1) + p(a2) + p(a3) + p(a4) =
4∑

j=1

p(aj),

i.e., we take all the probabilities assigned to possible values of X, up to the value under consid-

eration (in this case a4 ), and then add them up. It follows from the axioms of probability that,

if we sum over all possible outcomes, that
∑

j p(aj) = 1, all the probabilities assigned must sum

to unity, as noted before. Therefore,

P (X ≥ a4) = p (a4) + p (a5) + p (a6) + . . .

=

∑
j

p(aj)

− {p (a1) + p (a2) + p (a3)}

= 1− P (X ≤ a3) ,

and, similarly,

P (X > a4) = 1− P (X ≤ a4)

which is always useful to remember.

Example. Let us return to the example pmf we used before:
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p(x) =



p(0) = p(X = 0) = 1/8

p(1) = p(X = 1) = 3/8

p(2) = p(X = 2) = 3/8

p(3) = p(X = 3) = 1/8

What is the cdf of X? (to 4 d.p.)

P (x) =



P (0) = P (X ≤ 0) = 1/8 = 0.125

P (1) = P (X ≤ 1) = 4/8 = 0.5

P (2) = P (X ≤ 2) = 7/8 = 0.875

P (3) = P (X ≤ 3) = 8/8 = 1

Hint: For instance P (1) = P (X ≤ 1) = p(0) + p(1) = 1/8 + 3/8 = 4/8 = 0.5.

What is P (X ≥ 2)? P (X ≥ 2) = 1− P (1) = 1− 0.5 = 0.5

Hint: Use the earlier relationship that P (X ≥ 2) = 1− P (X < 2) = 1− P (1) = 1− 0.5 = 0.5.

Cumulative distribution functions (cdf) are also often represented graphically. The video below

walks you through the process of producing a graphical representation of a cdf for a discrete

random variable.

Constructing a cdf for a discrete random variable (YouTube, 6:55min)

4 Example Distributions

There is an infinite amount of possible discrete probability distributions. As it turns out a large

number of interesting experiments resulting in discrete random variables turn out to follow a

small number of types of distributions. We therefore introduce the most important ones of these

here.

All of these distributions depend on parameters (in this case either one or two) and the distri-

butional characteristics, as described by their expected values and variances, depend on these

parameters. In the following discussion we will make that link obvious.
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4.1 A Bernoulli random variable

Let us start by describing a number of examples of random variables which can be described as

a Bernoulli random variable.

� Whether or not a household has suffered some sort of property crime in the last 12 months,

with Y (yes) = 1 and Y (no) = 0

� Whether or not a person thinks that Brexit has improved their daily life, with Y (yes) = 1

and Y (no) = 0

� Whether you pass the Advanced Statistics exam, with Y (yes) = 1 and Y (no) = 0

� Whether a person is Covid vaccinated, with Y (yes) = 1 and Y (no) = 0

A Bernoulli random variable is a particularly simple (but very useful) discrete random variable.

All the above are examples of Bernoulli random variables. A Bernoulli random variable can only

assume one of two possible values: y = 0 or y = 1; with probabilities (1− π) and π, respectively.

Often, the value 1 might be referred to as a success and the value 0 a failure. Here, π is any

number satisfying 0 < π < 1, since it is a probability, and it is called a parameter for this

random variable. All distributions we will be talking about have at least one parameter. If you

know the type of a distribution and the values for its parameters then you know everything there

is to know about that random variable. For instance, as of Sept 2022 around 93% of the UK

population aged 12 or over has been covid vaccinated at least once (Source: UK Government).

This implies that here π = 0.93.

The value of this parameter will differ for every random variable.

Example. Consider the random variable indicating whether or not a person thinks that Brexit

has improved their daily life, with Y (yes) = 1 and Y (no) = 0. What do you think is, approxi-

mately, the value of the parameter π thinking about the UK population?

What is π? Don’t just guess but attempt to find a source of information that supports your

answer.

π = 0.17

(Allow for ±0.1) Text entry: Please enter the url of the information source you used.

Hint: There are surely different ways to ask this question. One possible source is this: Ipsos

Mori, but you may have found different ones, such as this.
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Clearly, different choices for π generate different probabilities for the outcomes of interest; it is

an example of a very simple statistical model and the (pmf) can be written compactly as:

p(y) = πy (1− π)1−y , 0 < π < 1, y = 0, 1.

For the vaccination example this implies (recall Y = 1 indicating a vaccinated person and

π = 0.93):

p(x) =

p(0) = 0.930 (1− 0.93)1−0 = 0.07

p(1) = 0.931 (1− 0.93)1−1 = 0.93

For a variable with two discrete outcome only, as this one, the cdf is not very interesting. But

we shall in any case state it

P (y) =

P (0) = P (y ≤ 0) = (1− π)

P (1) = P (y ≤ 1) = 1

or in the vaccination example

P (x) =

P (0) = P (y ≤ 0) = 0.07

P (1) = P (y ≤ 1) = 1

4.1.1 Distributional properties

This is really the simplest of discrete distributions, one with only two possible outcomes, 0

and 1. In some sense you know everything about this distribution if you know p(0) and p(1).

Keeping on mind other distributions (with many more possible outcomes) we will make it a

habit to describe distributions by their moments. In particular we will look at a distributions

first (expected value/mean) and the second moment (variance).

We calculate the expected value of a discrete random variable as follows

E[Y ] =

1∑
y=0

y p(y)

= 0 · p(0) + 1 · p(1) = 0 · (1− π) + 1 · π = π

So the expected value is π. On average we would expect an outcome of pi, the probability of

success. Of course, unless π is equal to 0 or 1 there is no possible outcome of π.
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The variance of this discrete random variable is calculated as follows:

V ar[Y ] = E[Y 2]− E[Y ]2 =

1∑
y=0

y2 p(y)− E[Y ]2

= (02 · p(0) + 12 · p(1))− π2 = (0 · (1− π) + 1 · π)− π2

= π − π2 = π(1− π)

Example. The variance of a Bernoulli random variable increases with π? TRUE or FALSE?

Hint: The variance is largest for π = 0.5. So the statement is false as the variance decreases as,

for instance, π increases from 0.5 to 0.6. This represents the situation in which there is most

uncertainty about the outcome. As the probability of success gets closer to 0 or 1 there is more

certainty about the outcome and hence the variance is smaller.

4.2 The Binomial random variable

Now we introduce a different, but related, random variable, a binomial random variable. The

example you you will find in most textbooks is the following. Define the random variable X as

the number of HEADS when you toss a fair coin three times (or any number of times, there is

nothing special about the number three). As we already discussed earlier, the possible outcomes

for this random variable are 0, 1, 2 or 3. Note that any individual coin toss is a Bernoulli random

variable with pi = 0.5 (if the coin is a fair coin).

Let’s list a few more examples of binomial random variables:

� The number of households (out of 1000 randomly selected) who have suffered some sort

of property crime in the last 12 months.

� The number of respondents who think that Brexit has improved their daily life, out of

1010 randomly selected people.

� The number of students out of 900 who pass the Advanced Statistics exam.

� The number of people (out of 300 randomly selected) who are Covid vaccinated, with

Y (yes) = 1 and Y (no) = 0

You can see that these all relate to repeated Bernoulli random variables (see the examples of

Bernoulli random variables we used earlier).
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Let us return to the coin toss example (X = the number of HEADs obtained from three flips

of a fair coin) for which we actually stated the probability distribution earlier. Now we discuss

how these probabilities were calculated. The four possible values of X with a1 = 0, a2 = 1,

a3 = 2 and a4 = 3 in the notation used above. Furthermore, assuming independence between

the coin tosses, we can write that

� p(0) = P (X = 0) = P (T, T, T ) = P (T)× P (T)× P (T) = (1/2)3 = 1/8

� p(1) = P (X = 1) = P (H,T, T ) + P (T,H, T ) + P (T, T,H)

= (1/2)3 + (1/2)3 + (1/2)3 = 1/8 + 1/8 + 1/8 = 3/8

� p(2) = P (X = 2) = P (H,H, T ) + P (H,T,H) + P (T,H,H)

= (1/2)3 + (1/2)3 + (1/2)3 = 1/8 + 1/8 + 1/8 = 3/8

� p(3) = P (X = 3) = P (H,H,H) = (1/2)3 = 1/8

With this information we can also state the cdf:

P (x) =



P (0) = p(0) = 1/8 = 0.125

P (1) = p(0) + p(1) = 1/8 + 3/8 = 0.5

P (2) = p(0) + p(1) + p(2) = 1/8 + 3/8 + 3/8 = 7/8 = 0.875

P (3) = p(0) + p(1) + p(2) + p(3) = 1

Example. What is P (X < 2)?

P (X < 2) = p(0) + p(1) = 0.5

What is P (X > 0)?

P (X > 0) = 1− P (X ≤ 0) = 1− 0.125 = 0.875

What is P (X > 2)?

P (X > 2) = 1− P (X ≤ 2) = 1− 0.875 = 0.125

What is P (2.5)?

P (2.5) = P (X ≤ 2.5) = P (X ≤ 2) = 0.125

In fact, this is a very simple example of a Binomial distribution. In general, a binomial ran-

dom variable is based on several repetitions of independent but identical Bernoulli experiments,

an experiment which can result in only one of two possible outcomes (success with a probability

denoted by π (0 < π < 1) and failure with probability denoted by 1− π). Therefore a binomial

random variable is based on several independent Bernoulli random variables with parameter π.
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A good example is opinion polls, when respondents are asked simple ”yes” or ”no” questions,

say ”Has Brexit improved your daily life?” (For now we abstract from the possibility of a ”Don’t

know” answer option). Individuals answer yes (1) or no (0). A random variable, X, is then

said to have a binomial distribution (and is called a Binomial random variable) if it is defined

to be the total number of successes in n independent and identical Bernoulli experiments; e.g.

of the 1010 people randomly selected to answer whether Brexit improved their daily life.

Note that the possible realisations of X are x = 0, 1, 2, ..., n, where n is the number of Bernoulli

experiments (n = 1010 in the above opinion poll example). If you know n and π then you can

derive the binomial probability mass function (pdf) as follows:

p(x) = P (X = x) =

(
n

x

)
πx(1− π)n−x, x = 0, 1, 2, ..., n; 0 < π < 1.

where (
n

x

)
=

n!

x!(n− x)!
,

and n! denotes n factorial : n! = n(n− 1)(n− 2)...2× 1; e.g., 3! = 6. In the above formula, we

define 0! = 1. Note that
(
n
x

)
is called a combinatorial coefficient and always gives an integer;

it simply counts the total number of different ways that we can arrange exactly x “ones” and

(n− x) “zeros” together.

Let’s go back to a previously calculated example, the probability of having two HEADS when

we toss a fair coin three times.

Example. For the tossing a fair coin three times example and receiving a HEADS being defined

as success, what are pi and n?

π = 0.5

n = 3

If you defined TAILS as success, what would pi be? π = 0.5

Hint: It is possible to define either of the two outcomes as success. Usually this would change

the probability of success, π, but as P (HEADS) = P (TAILS) = 0.5 it doesn’t change on this

occasion.

For example, consider when we calculated p(2) in the coin toss example.
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p(2) = P (X = 2) = P (H,H, T ) + P (H,T,H) + P (T,H,H)

= (1/2)3 + (1/2)3 + (1/2)3 = 1/8 + 1/8 + 1/8 = 3/8

We basically identified that there were three ways in which we could get two HEADS (H):

(H,H, T ), (H,T,H) and (T,H,H). Each of these outcomes had a probability of 1/8 and as

there were three ways we calculated 3 · (1/8) = 3/8.

How would that look when we apply the pmf formula? Let’s start with the combinatorial

coefficient.

(
n

x

)
=

n!

x!(n− x)!(
3

2

)
=

3!

2!(3− 1)!
=

3 · 2 · 1
(2 · 1) · (1)

=
6

2
= 3

So this result, 3, tell us that there are 3 ways in which we can get two HEADS (x = 2) when

tossing a coin three (n = 3) times. It was easy to figure out with without that formula when

n = 3 and x = 2, but the formula will be very useful when dealing with much larger n and x.

So now we know where the 3 came from in our calculation of the probability p(2). Let’s complete

the calculation by applying the above formula:

p(2) = P (X = 2) =

(
3

2

)
0.52(1− 0.5)3−2 = 3 · 0.52 · 0.51 = 3 · 1

8
=

3

8

There were three ways in which we could get two heads, and each of the three ways had a

probability of 1/8, which resulted in an overall probability of p(2) = 3/8.

Consider, then, a Binomial random variable, with parameters n = 5 and π = 0.3. The possible

outcomes for the random variable X are 0, 1, ..., 5 and we could calculate the probability for

each of these outcomes according to the above formula. Let’s do that for one outcome, let’s

calculate p(2) = p(X = 2):

p(2) = p(X = 2) =

(
5

2

)
(0.3)2 (0.7)3

=
5!

2!3!
(0.09) (0.343)

=
5 · 4
2

(0.09) (0.343)

= 0.3087.
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Example. Assume that π = 0.4, n = 10 and x = 5. What is p(5) =?

p(5) = p(X = 5) =

(
10

5

)
(0.4)5 (0.6)5

=
10!

5!5!
(0.01024) (0.077763)

= 252 · 0.0007962931

= 0.2006581

We can now also think of the cumulative distribution function, i.e. probabilities of the type

P (2) = P (X ≤ 2):

P (2) = P (X ≤ 2) = p (X = 0) + p (X = 1) + P (X = 2)

= p (0) + p (1) + p (2)

=

(
5

0

)
(0.3)0 (0.7)5 +

(
5

1

)
(0.3)1 (0.7)4 +

(
5

2

)
(0.3)2 (0.7)3

= 0.16807 + 0.36015 + 0.3087

= 0.83692.

Example. Assume that π = 0.4, n = 10 and x = 1.

What is P (1) =?

P (1) = P (X ≤ 1) = p (0) + p (1)

=

(
10

0

)
(0.4)0 (0.6)10 +

(
10

1

)
(0.4)1 (0.6)9

= 0.006046618 + 0.04031078

= 0.04635732.

Hint: This is just a straight application of the binomial formula.

What is P (9) =?
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P (9) = 1− P (X > 9) = 1− p (10)

= 1−
(
10

10

)
(0.4)10 (0.6)0

= 1− 0.0001048576

= 0.9998951.

Hint:You could apply the binomial formula straight, but calculating p(0) + p(1) + ...p(9) is very

burdensome. It is much easier when you recognise that the only outcome not captured by x ≤ 9

is X = 10 and hence you can calculate 1− p(10).

It is apparent that the calculation of probabilities of this type, in particular the cumulative

probabilities can be rather burdensome. It is therefore often useful to approximate discrete

random variables with a continuous random variable. In this context the transformed random

variable, Z = X/n, which defines the proportion of successes, will be useful. It should be

obvious that for very large n this can indeed be thought of a continuous random variable.

The advantage, which you will be able to appreciate after mastering the Continuous Random

Variables and in particular the Normal Random Variables sections, is that calculating these

probabilities can become more straightforward.

The following video introduces you to the way of calculating binomial pmf and cdfs in EXCEL.

You will also get a first glimpse of why it may be useful to approximate such distributions with

a normal distribution.

Video of calculating binomial pmf and cdf in Excel (YouTube, 14:19min).

4.2.1 Distributional properties

The binomial distribution has parameters n and π. The mean and variance of the binomial

distribution are determined by these two parameters as follows:

E[X] = nπ

V ar[X] = nπ(1− π)

Compare these parameters to those of a Bernoulli random variable. You should see that these are

related. This isn’t surprising as a binomial random variable really is the result of n applications

of a Bernoulli random variable.
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Example. Which combination of parameters delivers a distribution with a larger variance?

□ Distribution 1: n = 20, π = 0.7

□ Distribution 2: n = 30, π = 0.8

Hint: V ar[X1] = 20 · 0.7 · 0.3 = 4.2 and V ar[X2] = 30 · 0.8 · 0.2 = 4.8

Example. You are thinking of an experiment which involves rolling a dice multiple times. In

particular you are interested in the outcomes 1 and 2. How often should you be rolling the dice

such that the experiment is expected to deliver 10 values of 1 or 2?

n = 30

Hint: You want E[x] = nπ = 10. You need to recognise that the success probability π is 1/3

which then allows you to solve for n = 10.

4.2.2 Additional resources

Khan Academy:

� This is a set of clips to explain binomial random variables. Here is the link to the first

clip: [https://www.khanacademy.org/math/probability/random-variables-topic/

binomial distribution/v/binomial-distribution-1].

4.3 Geometric Random Variable

We now introduce the geometric random variables and these will also be linked to Bernoulli

random variables, just as binomial random variables were. Consider the following real life

situation. You are a journalist and saw the results of the Ipsos Mori survey on whether Brexit

has improved daily life. Your editor (a staunch Brexit supporter) has demanded that for the

evening news programme you have to interview a Brexit supporter. You know that, if you

sample a random person, there is only a 17% probability that that person things that Brexit

has improved life. How many people will you have to ask to find a Brexit supporter. The

random variable here is X = the number of people you need to ask to find a Brexit supporter.

This random variable is linked to the underlying Bernoulli experiment which describes whether

an individual person is a Brexit supporter (success with probability π = 0.17) or not (failure

with probability 1− π = 0.83).

In this case X is a Geometric random variable.

Other examples of a geometric random variable are:
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� The number of Space Rocket starts until one fails (here one would define a failed start as

a ”success”).

� The number of multiple choice questions you would have to answer until you get one right

if you are only guessing?

� How many people you meet in the bus until you meet one person not vaccinated against

Covid?

� How many arrows you have to throw on a darts board until you hit the bulls eye?

The probability mass function of a geometrically distributed random variable is

p (x) = p (X = x) = π (1− π)x−1 , x = 1, 2, 3, ...; 0 < π < 1,

and if a discrete random variable has such a probability mass function then we say that is a

Geometric distribution with parameter π.

Suppose the probability of success is π = 0.3. What is the probability that the first success is

achieved on the second experiment? We require

p (2) = p (X = 2) = (0.7) (0.3) = 0.21.

The probability that the first success is achieved on or before the third experiment is

P (3) = P (X ≤ 3)

= p (1) + p (2) + p (3)

= (0.7)0 (0.3) + (0.7)1 (0.3) + (0.7)2 (0.3)

=
(
1 + 0.7 + 0.72

)
(0.3)

= 0.657.

Example. Ariane is a space rocket by the European Space Agency. 95% of its launches are

successful (and we assume that successive launches are independent events). Imagine it is 1

December 2021. The next launch is planned for 25 December 2021 (launching the James Webb

Telescope). Define X as a random variable indicating in how many launches the next launch

failure will happen.
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What is π?

π = 0.05

Hint: Here we are investigating when the next failure will occur. Previously we called π the

probability of success. In this case ”success” is a failure of the launch.

What is p(3) =?

p (3) = p (X = 3) = 0.05 (0.95)2 = 0.045125 Hint: This is a standard application of the formula

for the pmf of a geometric r.v.

How would you interpret p(3)?

□ The probability that the next three launches fail.

□ The probability that the next three launches are successful.

□ The probability that latest the 3rd next launch fails.

□ The probability that the 3rd launch is the next failure.

□ The probability that the 3rd launch is successful.

Hint: The correct answer is ”The probability that the 3rd launch is the next failure.”

It is now January 2022 and the James Webb Telescope was launched successfully. What is

p(3) =?

p (3) = p (X = 3) = 0.05 (0.95)2 = 0.045125

Hint: This is exactly as before. Launches are treated as independent, so the fact that the

December 2021 launch was successful does not change anything about the probability of successful

launches in the future.

4.4 Poisson Random Variable

The Poisson random variable is widely-used to count the number of events occurring in a given

interval of time. It is not the only random variable appropriate for count variable but the most

popular. Here are a few examples of random variable we treat as poisson random variables.

� the number of cars passing an observation point, located on a long stretch of straight road,

over a 10 minute interval;

� the number of calls received in the University’s IT helpline complaining about BB access

problems in a day.
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� the number of customers entering a store between 3 and 4pm.

� the number of travellers arriving at the airport’s security check between 5 and 6am.

� the number of visitors to a website in a 10 second interval.

The probability mass function is

p (x) = P (X = x) =
λx

x!
exp (−λ) , x = 0, 1, 2, ...; λ > 0

in which, exp(.) is the exponential function (exp (a) = ea) and λ is a positive real number (a

parameter). We say that X has a Poisson distribution with parameter λ (note that λ will often

be referred to as the mean which will be discussed in a later Section).

Suppose that the number of visitors to a website, X, arriving in any 10 second interval follows

a Poisson distribution with λ = 5. What is p (X = 2)?

p (2) = p (X = 2) =
52

2!
exp (−5)

= 0.0842.

Therefore the probability to have 2 visitors is around 8.5%. The probability of more than 2

visits is

P (X > 2) = 1− P (X ≤ 2)

= 1− (p (X = 0) + p (X = 1) + (X = 2))

= 1−
(
e−5 + 5× e−5 + 12.5× e−5

)
= 1− 0.1247

= 0.8753.

Example. Consider Z to be a poisson distributed random variable with λ = 500. Calculate the

following probabilities:

p(480) = 0.0121

P (480) = 0.1921

P (x > 480) = 0.8079)
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Example. A shop is staffed to deal with at most 8 customers at the same time every hour. On

average the shop receives 6 customers every hour (λ = 6). What is the probability, in any hour

that customers will not be served?

Which of the following is the probability you are to calculate?

□ p(6)

□ p(8)

□ p(9)

□ P (6)

□ P (8)

□ P (9)

□ 1− P (6)

□ 1− P (8)

Hint: what you need here is the probability that there will be 9 or more customers P (x ≥ 9)

which for the discrete poisson distribution is equal to 1− P (x ≤ 8) = 1− P (8).

The probability of not all customers being able to be served is 15.28%.

Hint: Calculate 1− P (x ≤ 8) = 1− P (8) = 1− 0.8472

4.4.1 Distributional properties

The poisson distribution has one parameter, λ and it turns out that

E[X] = nλ

V ar[X] = λ

So, for this distribution the expected value is equal to the variance. This is an unusual feature

of this distribution.
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4.5 Mean and variance of a discrete random variable

For the above examples of discrete distributions we stated how the distributional parameters

related to the expected value (E[X] or µ) and the variance (V ar[X] or σ2) of that particular

random variable.

The general definition of the expected value for a discrete random variable is

E[X] = µ =
∑
x

xp(x).

where the sum is over all possible outcomes for that random variable.

The variance of a random variable, which provides a measure of the spread of the possible

outcomes around the mean, is also defined as an expected value, namely:

V ar[X] = E
[
(X − µ)2

]
=

∑
x

(x− µ)2p(x)

These are important relationships to keep in mind.

An alternative formulation for the V ar[X] can also be useful.

V ar[X] = E
[
(X − µ)2

]
= E

[
X2 − 2Xµ+ µ2

]
= E

[
X2 − 2XE [X] + E [X]2

]
= E

[
X2
]
− 2E [XE [X]] + E

[
E [X]2

]
This looks much more complicated for starters, until you note that E [X] = µ is a constant

parameter, and hence can be taken out of the expectations parameter and the 2nd term simpli-

fies: −2E [XE [X]] = −2E [X]E [X] = −2E [X]2. The same thinking applies to the third term:

E
[
E [X]2

]
= E [X]2E [1] = E [X]2. Therefore the above simplifies to the very useful

V ar[X] = E
[
(X − µ)2

]
= E

[
X2
]
− 2E [XE [X]] + E

[
E [X]2

]
= E

[
X2
]
− 2E [X]2 + E [X]2

= E
[
X2
]
− E [X]2
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Using the joint probabilities this can then be calculated as follows:

V ar[X] = E
[
X2
]
− E [X]2

=
∑
x

x2p(x)−

(∑
x

xp(x)

)2

Example. Simulate a small discrete distribution and calculate expected value and variance

When working with expected values and variances there are a number of calculation rules we

need to be aware of. here we will merely state them. In the below X is a random variable and

α is a constants.

E [α+X] = α+ E [X]

E [αX] = αE [X]

V ar [α+X] = V ar [X]

V ar [αX] = α2V ar [X]

In the expectations operator we can draw the constant factor outside of the expectations opera-

tor regardless of whether it appears additively or multiplicatively. An additive constant does not

change the variance of a random variable, but a multiplicative factor (α) increases the variance

of a random variable by the factor α2.

Example. Consider a random variable R with E[R] = 5 and V ar[R] = 3. What are the

expected values and variances for Z and Q if Z = 2R and Q = 4 +R?

E [Q] = E [4 +R] = 4 + E [R] = 4 + 5 = 9

E [Z] = E [2R] = 2E [R] = 2 · 5 = 10

V ar [Q] = V ar [4 +R] = V ar [R] = 3

V ar [Z] = V ar [2R] = 22V ar [R] = 4 · 3 = 12
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4.6 Summary of discrete random variables

This concludes the section on discrete random variables. These are extremely important for

random variables which have only a small number of possible outcomes. When discrete random

variables have a large number of possible outcomes we will actually often deal with them as

continuous random variables, approximating them with one of the continuous distributions

introduced next.

Example. For customers entering the Blackwell’s Bookshop, we know (from experience) that

only 2 out of 5 customers leave the shop with a purchase. Match the following random variables:

□ Will a randomly chosen customer entering the shop purchase something?

□ How many (non-purchasing) customers will come into the shop before a purchasing cus-

tomer comes?

□ If 1000 customers enter the bookshop on a particular day, what is the probability that that

more than 500 of these will purchase something?

□ How many sales will the bookshop make in the first hour?

with one of these distributions:

□ Bernoulli distribution

□ Poisson distribution

□ Binomial distribution

□ Geometric distribution

4.6.1 Additional resources

Khan Academy:

� This is a set of two clips to explain a poisson random variables. Here is the link to the

first clip: [https://www.khanacademy.org/math/probability/random-variables-to

pic/poisson process/v/poisson-process-1].

� How to use EXCEL to calculate discrete probabilities (Binomial and Poisson) [https:

//www.youtube.com/watch?v=4atJiXLqzwA]
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