
Data Introduction 2 - Covid Data

Introduction

Worldwide, there is a huge effort being undertaken by specialists of all fields to understand and reduce the
impact of this pandemic, as well as devising measures to help us all live under these new conditions. In this
project we will investigate some of the data related to the COVID-19 pandemic, focusing on the challenges
and questions that this data can help to answer.

Learning objectives In this project, you will:

• import data directly from websites (Section 1.2)
• perform some basic data cleaning and scaling techniques (Sections 1.3 and 1.5)
• produce line charts using ggplot (Section 1.4)
• learn how to use maps to illustrate geographic differences in the pandemic (Sections 1.7 and 1.8)
• use data designed to capture the severity of policy responses (Section 2)
• and think about the principles of evaluating the effectiveness of government policy (Sections 2.1 to 2.3)

The CORE-ECON Covid-19 Collection contains a more detailed version of this example.

1. Some exploratory data analysis

Let’s do some exploratory analysis using a dataset published by the https://tinyco.re/4826169 (ECDC)

1.1 Getting started

For Sections 1.2 to 1.4, you will need the following packages, which we will install and import now:
#install.packages(c("sets", "forecast", "readxl", "tidyverse", "ggplot2", "utils", "httr"))

library(readxl) # enable the read_excel function
library(tidyverse) # for almost all data handling tasks
library(ggplot2) # plotting toolbox
library(httr) # for downloading data from a URL
library(stargazer) # for nice regression output

1.2 Import the data into R

Very helpfully, the ECDC webpage that contains the data (https://tinyco.re/7709786) provides an R script
(shown in the next code block) that allows you to download the most current dataset. You could download
the dataset to your computer and then import it into R instead, but here the ECDC has built a direct
pipeline into their data. After running the code below, a datafile called data will appear in your environment.
It will contain up-to-date case and fatality data.

1

https://www.core-econ.org/project/core-covid-19-collection/
https://tinyco.re/7709786

#download the dataset from the ECDC website to a local temporary file (“tf”)
GET("https://opendata.ecdc.europa.eu/covid19/nationalcasedeath/csv",

authenticate(":", ":", type="ntlm"),
write_disk(tf <- tempfile(fileext = ".csv")))

Response [https://opendata.ecdc.europa.eu/covid19/nationalcasedeath/csv/]
Date: 2021-03-06 19:38
Status: 200
Content-Type: application/octet-stream
Size: 2.61 MB
<ON DISK> C:\Users\msassrb2\AppData\Local\Temp\RtmpWiBTjd\filea542f43a68.csv
#read the Dataset sheet into “R”. The dataset will be called "data".
data_cov <- read_csv(tf,col_types = "fffnfncnnc") # coltypes presets the types

NOTE: By uploading data in this way you will always get the latest data. This means that, if you replicate
this code, you will have more recent data than the data used when this project was written (19 February
2021).

1.3 Data cleaning and Prep

Let’s look at the structure of this dataset. We want to make sure we understand all the variables and give
them sensible names we can work with.
str(data_cov)

Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 23292 obs. of 10 variables:
$ country : Factor w/ 220 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
$ country_code : Factor w/ 214 levels "AFG","ALB","DZA",..: 1 1 1 1 1 1 1 1 1 1 ...
$ continent : Factor w/ 5 levels "Asia","Africa",..: 1 1 1 1 1 1 1 1 1 1 ...
$ population : num 38928341 38928341 38928341 38928341 38928341 ...
$ indicator : Factor w/ 2 levels "cases","deaths": 1 1 1 1 1 1 1 1 1 1 ...
$ weekly_count : num 0 0 0 0 0 0 0 0 1 3 ...
$ year_week : chr "2020-01" "2020-02" "2020-03" "2020-04" ...
$ rate_14_day : num NA 0 0 0 0 ...
$ cumulative_count: num 0 0 0 0 0 0 0 0 1 4 ...
$ source : chr "Epidemic intelligence, national weekly data" "Epidemic intelligence, national weekly data" "Epidemic intelligence, national weekly data" "Epidemic intelligence, national weekly data" ...
- attr(*, "spec")=
.. cols(
.. country = col_factor(levels = NULL, ordered = FALSE, include_na = FALSE),
.. country_code = col_factor(levels = NULL, ordered = FALSE, include_na = FALSE),
.. continent = col_factor(levels = NULL, ordered = FALSE, include_na = FALSE),
.. population = col_number(),
.. indicator = col_factor(levels = NULL, ordered = FALSE, include_na = FALSE),
.. weekly_count = col_number(),
.. year_week = col_character(),
.. rate_14_day = col_number(),
.. cumulative_count = col_number(),
.. source = col_character()
..)

Some of the variables have obvious meaning, such as country, continent and population. Note that
population is an estimate which does not change through our sample period. The date is coded in year_week.
For instance the fifth week of 2021 shows as 2021-05.

2

To understand the structure of this datafile you should refer to the https://www.ecdc.europa.eu/en/publications-
data/data-national-14-day-notification-rate-covid-19 provided by the ECDC, but for now we can learn a lot
from looking at the data for a particular country in a particular week.
data_cov %>% filter(country == "Germany" & year_week == "2020-20")

You see that you get two entries, one for the case number data, for which you get the weekly count
(weekly_count), the cumulatice count (cumulative_count) and the 14-day notification rate (per 100,000 for
cases and per 1,000,000 for deaths). All the other pieces of information are identical for both rows (e.g. the
population). The value of the indicator variable tells us whether the statistics refer to cases or deaths.

We want to change the structure of the data such that we have only one entry per country and week.
For that week we then want to have variables cases_weekly, deaths_weekly, cases_weekly_cumulative,
deaths_weekly_cumulative, cases_14_day and deaths_14_day. Before you execute this command take
note of the number of observations in data.
data_cov <- data_cov %>% pivot_wider(names_from = indicator, values_from = c(weekly_count, cumulative_count,rate_14_day))

Check the number of observations in data_cov. They will have halfed. Let’s confirm the variable names we
now have
names(data_cov)

[1] "country" "country_code"
[3] "continent" "population"
[5] "year_week" "source"
[7] "weekly_count_cases" "weekly_count_deaths"
[9] "cumulative_count_cases" "cumulative_count_deaths"
[11] "rate_14_day_cases" "rate_14_day_deaths"

This is exactly what we wanted. Let’s just simplify a few names
names(data_cov)[names(data_cov)=="weekly_count_cases"] <- "cases_weekly"
names(data_cov)[names(data_cov)=="weekly_count_deaths"] <- "deaths_weekly"
names(data_cov)[names(data_cov)=="cumulative_count_cases"] <- "cases_weekly_cumulative"
names(data_cov)[names(data_cov)=="cumulative_count_deaths"] <- "deaths_weekly_cumulative"
names(data_cov)[names(data_cov)=="rate_14_day_cases"] <- "cases_14_day"
names(data_cov)[names(data_cov)=="rate_14_day_deaths"] <- "deaths_14_day"
names(data_cov)[names(data_cov)=="year_week"] <- "dates"
names(data_cov)[names(data_cov)=="population"] <- "popData2019"

The date information is currently captured in the dates variable (or year_week when you originally im-
ported the data). Variable dates is currently a text (chr) variable, but we want R to know that each
string represents a date. Dates are of the format “year-week” e.g. 2020-32. In terms of handling this
is a rather awkward date format. We want to translate this into dates (for instance the Thursday of
the respective week). The process of doing so is not so obvious. Help can be found in the following
https://stackoverflow.com/questions/45549449/transform-year-week-to-date-object/45587644 which advices
the use of the the ISOweek package. There is no need to really delve into the detail of the below code.
install the ISOweek package the first time you do this
library(ISOweek) # Weeks are provided in the ISO weeks format

data_cov <- data_cov %>%
separate(dates, c("year", "week"), "-") %>%
mutate(dates = ISOweek2date(paste0(year,"-W",week,"-4")))

As a result we now have three variables in our datafile, year, week and dates, the latter representing the
Thursday of each week.

3

There is one extra bit of information needed, in particular in order to create maps later, and that is a two
letter county code. The datafile already contains a three letter country code , e.g. “AFG” for Afghanistan,
but what we will also need is a two letter code as that is the information used in the mapping function.

Fortunately, there already exists a package in R which facilitates the translation from a 3 digit code (origin
= "iso3c") to a 2 digit country code (destination = "iso2c"). That is the function countrycode from
the countrycode package. We save that code in the new variable geoID.
library(countrycode)

data_cov$geoID <- countrycode(data_cov$country_code, origin = "iso3c", destination = "iso2c")

You can confirm, by looking at the dataframe that Afgghanistan’s two letter country code is “AF”.

1.4 Plotting line charts for some countries

Let’s create some charts to describe the development of the pandemic in different countries. These are weekly
case and death data. Let’s pick one country and plot information on this country through time. We chose
China, where this particular virus was first identified

We use the ggplot function, which produces very nice charts. We will create the chart and save it as the
object g1, then display it by just calling g1. We will use the subset function to select data from China only
(subset(data, country == "China")).
g1 <- ggplot(subset(data_cov, country == "China"), aes(x=dates,y=deaths_weekly)) +

geom_line() +
ggtitle("Covid-19 weekly cases")

g1

4

0

500

1000

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021
dates

de
at

hs
_w

ee
kl

y
Covid−19 weekly cases

Before continuing we may also want to highlight a particularity in these data. You can see that in the middle
of April there is one week (20 April 2020) on which almost 1,300 deaths have been reported, vastly larger
than the numbers in the weeks before and after. And in fact, the day before there were only 13 reported
deaths. It turns out that this apparent outlier is the result of some revision of previously published statistic.
In that week China declared that around 1,300 deats, which were previously not attributed to Covid, should
be attributed https://www.livescience.com/wuhan-coronavirus-death-toll-revised.html.

Let’s overlay the daily cases for two countries, say China and South Korea, but you can change the code
accordingly for countries you are interested in.
sel_countries <- c("China", "South Korea")
g2 <- ggplot(subset(data_cov, country %in% sel_countries),

aes(x=dates,y=cases_weekly, color = country)) +
geom_line() +
ggtitle("Covid-19 daily cases")

g2

5

0

10000

20000

30000

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021
dates

ca
se

s_
w

ee
kl

y

country

China

South Korea

Covid−19 daily cases

Here you can see the much-praised ability by South Korea (https://tinyco.re/4913845) to suppress the numbers
of infections effectively. However, you might argue that it is difficult to directly compare the outcomes of
countries with different population sizes and different knowledge about the virus (China undertook virus
containment measures at a time when very little was known about the virus).

Explore the data: Redo Figure 1.3, but for two or three different countries of your choice.

Now we look at some European countries (Spain, France, and the UK).
sel_countries <- c("Spain", "France", "United Kingdom")
g3 <- ggplot(subset(data_cov, country %in% sel_countries),

aes(x=dates,y=cases_weekly, color = country)) +
geom_line(size = 1) + # size controls the line thickness
ggtitle("Covid-19 weekly cases")

g3

6

0e+00

1e+05

2e+05

3e+05

4e+05

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021
dates

ca
se

s_
w

ee
kl

y country

France

Spain

United Kingdom

Covid−19 weekly cases

Explore the data: Check out the ggplot cheatsheet (https://tinyco.re/8940854) to see some of the
many ways in which you can customise graphs. In particular, see what happens if you replace the
last line in the code block above (g3) with g3 + theme_bw() or g3 + theme_dark().

It is important to understand that the number of newly identified cases is also a function of the testing effort
in a particular week. This is particularly important when looking at the above figure. During the first wave,
testing for Covid-19 was mainly done for symptomatic patients and their contacts. In other words it was
very targeted. In the second half of 2020, testing became much more widespread and the higher numbers of
confirmed cases in the second wave are mainly explained by this difference in testing regime.

Read more: • This https://tinyco.re/4319550, written on 1 April 2020, compares testing strategies
adopted by various countries. • https://tinyco.re/6395215, written on 4 April 2020, explains how
differences in testing strategies makes comparisons across countries difficult.

1.5 Per-capita statistics, other standardisations and some graphical representa-
tions

It was mentioned earlier that comparing raw numbers of reported Covid cases between countries is not so
instructive when comparing countries or regions with different population sizes. A coomonly used population
adjusted measure is the number of weekly cases per 100,000 population, sometimes called the incidence rate
(e.g. https://coronavirus.jhu.edu/map.html).

In order to adjust the weekly case numbers we use the 2019 population data (popData2019) which are
included in the dataset. While each week has its own population entry, you should recognise that this
population information does not actually change.

7

https://tinyco.re/8940854

We will now create new variables pc_cases and pc_deats which report the number of confirmed new cases
or deaths per 100,000 people for a 7 day period.
data_cov <- data_cov %>%

mutate(pc_cases = (cases_weekly/popData2019)*100000,
pc_deaths = (deaths_weekly/popData2019)*100000)

With
sel_countries <- c("Spain", "France", "United Kingdom")
g5 <- ggplot(subset(data_cov, country %in% sel_countries),

aes(x=dates,y=pc_deaths, color = country)) +
geom_line(size = 1) + # size controls the line thickness
ggtitle("Covid-19 weekly deaths per 100,000")

g5

0

5

10

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021
dates

pc
_d

ea
th

s country

France

Spain

United Kingdom

Covid−19 weekly deaths per 100,000

This makes it obvious that Spain was hit harder by the first wave in Spring 2020 and that the UK had a more
difficult Winter 20/21. More importantly, these population-adjusted data allows us to compare countries of
very different size. For instance we can look at the India, US, Sweden and Germany.
sel_countries <- c("United States", "Germany", "Sweden", "India")
g5 <- ggplot(subset(data_cov, country %in% sel_countries),

aes(x=dates,y=pc_deaths, color = country)) +
geom_line(size = 1) + # size controls the line thickness
ggtitle("Covid-19 weekly deaths per 100,000")

g5

8

0

2

4

6

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021
dates

pc
_d

ea
th

s

country

Germany

India

Sweden

United States

Covid−19 weekly deaths per 100,000

Is it the case that countries with larger population density find it more difficult to control the spread of
Covid? This is a very fair question to ask. In order to answer this question we need to import data on the
land area size of countries. We already have population data and then we can easily calculate a measure for
the population density.

The data for the country size are available from the following csv file: CountryIndicators.csv. The data in
this file have been downloaded from the https://www.gapminder.org/data/ (this also imports two further
country indicators, Health Expenditure and GDP per capita which we will use Later, from the World Health
Organisation). I made your life easy by ensuring that the country names match as much as possible. For
instance in Gapminder the UK is “United Kingdom” and in the Covid data it is called “United_Kingdom”.
We need the names to be identical in order for the following code to correctly merge the country size into our
datafile. This may require some manual checking (which I have done for you now).

Another reason why you need to check the country names is that there are countries or territories which
may or may not be universally recognised as countries. Perhaps you realised that at the beginning of the
code I changed the variable name from countriesAndTerritories to country just for simplicity. But as
the name indicates, data contains territories which are not universally recognised as independent countries
(e.g. Anguilla, which is a British Overseas Territory or Taiwan, which is only recognised by currently 15
countries as an independent state and otherwise is treated as a part of the People’s Republic of China -
see https://en.wikipedia.org/wiki/Political_status_of_Taiwan). So data can be quite political and it is
for this reason that you will often see economic statistics recorded for countries and terretories. Renaming
this variable here to countries is really only meant to make our coding life easier and not as a political
statement.

The file “LandArea.csv” also imports the variable ‘ContinentCode" which indicates which continent a country
belongs to .

After downlaoding the list of countries and their respective sizes (in column Land_Area_sqkm) we can merge

9

this information into data. Both data and landarea contain a column country and that is what R will use
to match information. If you want to merge on columns which do not have the same name you can do this by
using the by.x and by.y options in the merge function. Use ?merge to look at the help pages.
countryInd <- read_csv("CountryIndicators.csv",na = "#N/A") # CHECK THAT NAMES MATCH
countryInd <- countryInd %>% select(-country)
data_cov<- merge(data_cov,by = "geoID", countryInd,all.x=TRUE)

We can now calculate the population density
data_cov <- data_cov %>% mutate(popdens = popData2019/Land_Area_sqkm) # calculate population density

We can now calculate a new summary table for per-capita cases and include the population density.
table3 <- data_cov %>% group_by(country) %>% # groups by Country

summarise(Avg_cases = mean(pc_cases,na.rm = TRUE),
Avg_deaths = mean(pc_deaths,na.rm = TRUE),
PopDen = mean(popdens))

This table has one row per country and three additional variables, Avg_cases, Avg_deaths and PopDen. We
can now use these data to create a scatterplot using density average
ggplot(table3,aes(PopDen,Avg_deaths)) +

geom_point() +
scale_x_log10() +
ggtitle("Population Density v Per Capita Deaths")

0

2

4

10 100 1000 10000
PopDen

A
vg

_d
ea

th
s

Population Density v Per Capita Deaths

This uses the typical ggplot architecture. If you want to figure out what scale_x_log10() does, look at
the Figure if you take this out.

10

Looking at the plot it is not immediatly obvious whether there is a clear relationship between these variables.
Just looking at the overall population density may be sliightly too simplistic as it matters how bunched up in
a country a population lives.

1.6 Correlations

An important statistic which is used to measure the strength of a relationship is the correlation coefficient.

Is there a relationship between PopDen and Avg_deaths?

CorrPopDen,Avg_deaths = Cov(PopDen,Avg_deaths)
sPopDen sAvg_deaths

Correlations are in the [−1, 1] interval. They are standardised covariances. Ensure you revise how to calculate
sample s.d. and covariances by hand! R does it using the cor function.
cor(table3$PopDen, table3$Avg_deaths,use = "complete.obs")

[1] -0.0694032

So if at all, there is a negative relationship but close to 0.

1.7 Plotting maps of COVID-19 data

Maps are a great tool to illustrate the geographic distribution of any variable.

For Sections 1.6 and 1.7, you will need the following packages for drawing maps, which we will install and
import now:
#install.packages(c(“sf”, “raster”, “spData”, “tmap”))
library(sf)
library(raster)
library(spData)
library(tmap)

Let’s create a map first and then we will find out how to manipulate the map to display what we want.
Add fill and border layers to world shape
tm_shape(world) + tm_polygons(col = "lifeExp")

Wow, one line of code and you get a world map which shows which countries have the highest and lowest life
expectation. Amazing!

What did the code do? We used the tmap package, which has a range of built-in map information, and
tm_shape(world), which contains shape information (details of the boundaries) of the world’s countries.
Shape information is essential for drawing maps. Then we specify the variable that determines the colors and
borders (+ tm_polygons(col = "lifeExp")).

Read more: To learn more about geocomputing and the tmap package, check out
https://tinyco.re/1848888, written by Robin Lovelace, Jakub Nowosad, and Jannes Muenchow.

We want to make a similar map as in Figure 1.X, but showing information on COVID-19 cases instead. We
will first deconstruct the code above to understand where tmap stores the data on life expectancy.
m2 <- tm_shape(world)
str(m2)

List of 1
$ tm_shape:List of 12

11

lifeExp
50 to 55
55 to 60
60 to 65
65 to 70
70 to 75
75 to 80
80 to 85
Missing

Figure 1: Figure 1.X: World Map indicating Life expectancy

12

..$ shp_name : chr "world"
..$ shp :Classes 'sf', 'tbl_df', 'tbl' and 'data.frame': 177 obs. of 11 variables:
.. ..$ iso_a2 : chr [1:177] "FJ" "TZ" "EH" "CA" ...
.. ..$ name_long: chr [1:177] "Fiji" "Tanzania" "Western Sahara" "Canada" ...
.. ..$ continent: chr [1:177] "Oceania" "Africa" "Africa" "North America" ...
.. ..$ region_un: chr [1:177] "Oceania" "Africa" "Africa" "Americas" ...
.. ..$ subregion: chr [1:177] "Melanesia" "Eastern Africa" "Northern Africa" "Northern America" ...
.. ..$ type : chr [1:177] "Sovereign country" "Sovereign country" "Indeterminate" "Sovereign country" ...
.. ..$ area_km2 : num [1:177] 19290 932746 96271 10036043 9510744 ...
.. ..$ pop : num [1:177] 8.86e+05 5.22e+07 NA 3.55e+07 3.19e+08 ...
.. ..$ lifeExp : num [1:177] 70 64.2 NA 82 78.8 ...
.. ..$ gdpPercap: num [1:177] 8222 2402 NA 43079 51922 ...
.. ..$ geom :sfc_MULTIPOLYGON of length 177; first list element: List of 3
..$:List of 1
..$: num [1:8, 1:2] 180 180 179 179 179 ...
..$:List of 1
..$: num [1:9, 1:2] 178 178 179 179 178 ...
..$:List of 1
..$: num [1:5, 1:2] -180 -180 -180 -180 -180 ...
..- attr(*, "class")= chr [1:3] "XY" "MULTIPOLYGON" "sfg"
.. ..- attr(*, "sf_column")= chr "geom"
.. ..- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA NA NA NA NA NA
..- attr(*, "names")= chr [1:10] "iso_a2" "name_long" "continent" "region_un" ...
..$ name : NULL
..$ is.master : logi NA
..$ projection : NULL
..$ bbox : NULL
..$ unit : NULL
..$ simplify : num 1
..$ point.per : logi NA
..$ line.center: chr "midpoint"
..$ filter : NULL
..$ check_shape: logi TRUE
- attr(*, "class")= chr "tmap"

The output above looks complicated. m2 is a list with one element called sm_shape, which in turn is a list
with 12 elements. Importantly one of these elements, called shp, contains information on the respective
countries.

Let’s look at the element shp to understand what it looks like. We will save it as the object temp.
temp <- m2tm_shapeshp
names(temp)

[1] "iso_a2" "name_long" "continent" "region_un" "subregion" "type"
[7] "area_km2" "pop" "lifeExp" "gdpPercap" "geom"

shp is a “standard” dataframe with country-specific information, and you can see that one of the variables is
life expectancy (lifeExp). This is where tmap got the info from. We will insert the information on cases into
this dataframe and then use that to display the data. iso_a2 is a variable with country abbreviations. As we
have this information also in our dataset (data) we will use country abbreviations to merge the data.

We start by extracting the information we want to merge into temp from our original dataset (data). As an
example, we will use data for all countries on 14 December 2020 (“2020-12-14”).
temp_mergein <- data_cov %>% filter(dates == "2021-02-04") %>%

select(geoID, cases_weekly,

13

pc_cases, deaths_weekly, pc_deaths)

When you run this you are likely to get the following error message
Error in (function (classes, fdef, mtable) :

unable to find an inherited method for function ‘select’ for signature ‘"tbl_df"’

A Google search reveals that this issue arose because the select function appears in two different packages
we loaded (raster and tidyverse) - type ?select into the command window to see this problem. In these
cases, R chooses the function from the package loaded last (raster in this case), whereas we wanted the
function from the dplyr package (automatically loaded with the tidyverse).

These are the issues which arise with an open-source software where many people contribute different packages,
like the tidyverse and the raster package, and there isn’t an external institution that ensures people do
not use the same name for different functions. In fact, look at the notices in your R console that you ignored
after loading the raster package. Most likely you will find a message similar to: “Attaching package:
‘raster’. The following object is masked from ‘package:dplyr’: select”. This problem could
have been avoided by loading the tidyverse package after the raster package (this is one of the quirks you
will encounter when you work with R).

So when we want to run the above command we have to tell R that we want the select function from the
dplyr package (dplyr::select).
temp_mergein <- data_cov %>% filter(dates == "2021-02-04") %>%

dplyr::select(country,geoID, cases_weekly,
pc_cases, deaths_weekly, pc_deaths)

We only selected the variables we are interested in, and the geoID variable which we will match with iso_a2
in the shape file.

As it turns out, the country code for the UK in data (and hence in temp_mergein) is UK and in the shape
file it is GB. We need to change one of them to enable data for the UK to be matched correctly, otherwise the
map would show missing data for the UK.
temp_mergein$geoID <- as.character(temp_mergein$geoID) # turn geoId into character
temp_mergein$geoID[temp_mergein$geoID == "UK"] <- "GB"

Alternativly you could leave geoID a factor var and change UK level name to GB
#levels(temp_mergein$geoID)[levels(temp_mergein$geoID)=="UK"] <- "GB"

Now we will use the merge function to add this info into m2 so our COVID-19 data is available to map.
We specify the respective variables used to match the data (by.x = "iso_a2", by.y = "geoId") and also
ensure that we keep all of our original country information, even if it is unrelated to COVID-19 (all.x =
TRUE).
temp <- merge(temp, temp_mergein, by.x = "iso_a2", by.y = "geoID", all.x = TRUE)

Now that we manipulated the datafile at the core of the mapping operation we need to insert it back into the
m2 file into exactly the same spot where we found that datafile in the first place (m2tm_shapeshp).
m2tm_shapeshp <- temp

Now we can return to the mapping code and plot the weekly, per 100,000 population, number of casualties.
Add polygons layer to world shape
m2 + tm_polygons(col = "pc_deaths", n=10) # n = 10 controls the number of categories

There are many ways you can customize your maps. For instance, the tm_style function allows you to
change the colour scheme.

14

pc_deaths
0 to 2
2 to 4
4 to 6
6 to 8
8 to 10
10 to 12
12 to 14
14 to 16
Missing

Figure 2: Figure 1.X: Weekly number of deaths per 100,000

15

m2 + tm_polygons(col = "pc_deaths", n=10) + # n = 10 controls the number of categories
tm_style("col_blind")

pc_deaths
0 to 2
2 to 4
4 to 6
6 to 8
8 to 10
10 to 12
12 to 14
14 to 16
Missing

Figure 3: Figure 1.X: Weekly number of deaths per 100,000

Or you can change the categories, add a background and change the legend title.
breaksm <- c(1,2,3,4,5,10,50) # controls the breakpoints for categories
m2 +

tm_polygons(col = "pc_deaths", breaks=breaksm, title = "Weekly deaths\n Jan 2021") +
tm_layout(bg.color = "lightblue")

2 Hypothesis Testing

In order to practice some hypothesis testing we will look at the data as aggregated across continents
(continentExp). Here we select all observations from the first week of February 2021 and then average data
across all countries in a particular continent.
seldate <- "2021-02-04" # Set the date you wnat to look at
table4 <- data_cov %>% filter(dates == seldate) %>%

group_by(continent) %>%
summarise(Avg_cases = mean(pc_cases, na.rm = TRUE),

Avg_deaths = mean(pc_deaths, na.rm = TRUE),
n = n()) %>% print()

16

Weekly deaths
 Jan 2021

1 to 2
2 to 3
3 to 4
4 to 5
5 to 10
10 to 50
Missing

Figure 4: Figure 1.X: Weekly number of deaths per 100,000

17

A tibble: 5 x 4
continent Avg_cases Avg_deaths n
<fct> <dbl> <dbl> <int>
1 Asia 53.5 0.457 43
2 Africa 18.9 0.401 56
3 Europe 160. 3.69 57
4 America 86.6 1.39 50
5 Oceania 7.68 0.0937 14

The question we will be asking is whether the differences between continents are statistically significant.

We start by just picking out the
test_data_EU <- data_cov %>%

filter(continent == "Europe") %>% # pick European data
filter(dates == seldate) # pick the date

mean_EU <- mean(test_data_EU$pc_cases,rm.na = TRUE)

test_data_AM <- data_cov %>%
filter(continent == "America") %>% # pick European data
filter(dates == seldate) # pick the date

mean_AM <- mean(test_data_AM$pc_cases,rm.na = TRUE)

sample_diff <- mean_EU - mean_AM
paste("mean_EU =", round(mean_EU,1),", mean_A =", round(mean_AM,1))

[1] "mean_EU = 160.5 , mean_A = 86.6"
paste("sample_diff =", round(sample_diff,1))

[1] "sample_diff = 73.9"

We want to know whether this difference is statistically and/or economically significant?

We apply a two-sample t-test (comparing the means in two samples) using the t.test function.
t.test(test_data_EU$pc_cases,test_data_AM$pc_cases, mu=0) # testing that mu = 0

##
Welch Two Sample t-test
##
data: test_data_EU$pc_cases and test_data_AM$pc_cases
t = 3.2577, df = 102.09, p-value = 0.001525
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
28.8907 118.8312
sample estimates:
mean of x mean of y
160.46462 86.60367

The p-value is very small and hence it is very unlikely that this difference would have arisen by chance if the
null hypothesis WAS correct.

We can try the same for comparing Africa and Asia.
test_data_AF <- data_cov %>%

filter(continent == "Africa") %>% # pick European data
filter(dates == "2021-02-04") # pick the date

test_data_AS <- data_cov %>%

18

filter(continent == "Asia") %>% # pick European data
filter(dates == "2021-02-04") # pick the date

t.test(test_data_AF$pc_cases,test_data_AS$pc_cases, mu=0) # testing that mu = 0

##
Welch Two Sample t-test
##
data: test_data_AF$pc_cases and test_data_AS$pc_cases
t = -1.9017, df = 51.99, p-value = 0.06276
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-71.271838 1.914107
sample estimates:
mean of x mean of y
18.85612 53.53499

Here the difference is less obvious. The p-value is just below 10%. So there is actually a substantial (i.e. around
10%) probability that the difference we see (the difference in means is around 30), could be the result of
random variation.

3 Inference in Regression Analysis

Previously we learned how to run a regression in R. Running a regression is really the easiest part of the
whole business. Much more difficult is to perform inference and to interpret the results correctly. Much of the
unit is about the latter and that is teh most difficult aspect. Here we will touch on the task of performing
statistical inference in a regression model.

Let’s create new dataset which contains for every country:

• the average pc_deaths,
• the continent (continentExp),
• the population density data (PopDen).
• the GDP per capita (GDPpc,2018, in US$), from the https://apps.who.int/nha/database
• Current Health Expenditure (HealthExp) as % GDP, 2018, from the https://apps.who.int/nha/database

table3 already contains pc_deaths and PopDen and has one line for each country.
names(table3)

[1] "country" "Avg_cases" "Avg_deaths" "PopDen"

We need to merge in the other info from data. We first select the variables from the data datframe. After
just selecting these variables and the country name (dplyr::select(country ...)) we still have weekly
observations for each country. However, none of the selected info actually changes through the weeks. The
call of unique() ensures that per country we just keep one row/observation.

For some countries/territories we do not have any health data and by applying drop_na we remove all such
incomplete observations.
mergecont <- data_cov %>% dplyr::select(country,continent, GDPpc, HealthExp) %>%

unique() %>% # this reduces each country to one line
drop_na # this drops all countries which have incomplete information

table3 <- merge(table3,mergecont) # merges in continent information
table3 <- table3 %>% mutate(GDPpc = GDPpc/1000) # convert pc GDP into units of $1,000

We are now left with 183 countries/territories. Recall, one observation here is one country.

19

Now we run a regresison of the average pc_deaths (Avg_deaths in table3) against a constant only.

Avg_deathsi = α+ ui

mod1 <- lm(Avg_deaths~1,data=table3)

The new object mod1 ontains a whole host of regression output. You can see what elements it has by checking
names(mod1). The nicest way to display regression results is by using the stargazer function.

##
===
Dependent variable:

Avg_deaths

Constant 0.777***
(0.073)
##

Observations 176
R2 0.000
Adjusted R2 0.000
Residual Std. Error 0.968 (df = 175)
===
Note: *p<0.1; **p<0.05; ***p<0.01

Check out this page on the ECLR webpage to learn more details about how to access particular elements of a
regression (like residuals, fitted values or coefficients).

When you run a regression with only a constant then the sample estimate of the coefficient α is the sample
mean of the dependent variable, here Avg_deaths. So on average, countries had an average rate of deaths of
just under 1 per 100,000 per week due to Covid-19. (Note that in this average all countries have the same
weight).

The information provided by the regression output allows you to perform a hypothesis test on the population
mean.

t− test = α̂/se
α̂

which can be used to test the null hypothesis H0 : α = 0 against HA : α 6= 0. If you want to test a hypothesis
against another null hypothesis, for example H0 : α = 1 against HA : α 6= 1 then you would use the following
t-test statistic

t− test = (α̂− 1)/se
α̂

On most occasions you would want too estimate a regression which actually includes explanatory variables
(one or more). Let’s illustrate this for the following regression relationship, which includes the GDP per
capita (GDPpc) as an explanatory variable.

Avg_deathsi = α+ β GDPpci + ui

mod2 <- lm(Avg_deaths~GDPpc,data=table3)
stargazer(mod2, type="text")

##
===
Dependent variable:

Avg_deaths

20

http://eclr.humanities.manchester.ac.uk/index.php/R_Regression

GDPpc 0.012***
(0.003)
##
Constant 0.589***
(0.084)
##

Observations 176
R2 0.085
Adjusted R2 0.079
Residual Std. Error 0.929 (df = 174)
F Statistic 16.108*** (df = 1; 174)
===
Note: *p<0.1; **p<0.05; ***p<0.01

For a simple regression (only one explanatory variable) it actually possible to represent the result of this
regression graphically.
ggplot(table3, aes(x=GDPpc, y=Avg_deaths)) +

labs(x = "GDPpc", y = "Avg_deaths") +
geom_point(size = 1.0) +
geom_abline(intercept = mod2$coefficients[1],

slope = mod2$coefficients[2], col = "blue")+
ggtitle("GDPpc v Avg_deaths from Covid-19")

0

1

2

3

0 50 100 150
GDPpc

A
vg

_d
ea

th
s

GDPpc v Avg_deaths from Covid−19

Here you can see a scatter plot of the data in a GDPpc-Avg_deaths diagram. Superimposed on that scatter
plot is the line of best fit or the estimated regression line. You can see in the code above that we use the
estimated coefficients intercept = mod2$coefficients[1], slope = mod2$coefficients[2], to create
this line.

Additional explanatory variables can easily be includes as demonstrated in the next line of code.
mod3 <- lm(Avg_deaths~GDPpc+HealthExp,data=table3)
stargazer(mod3,type = "text")

##
===
Dependent variable:

Avg_deaths

GDPpc 0.009***
(0.003)
##

21

HealthExp 0.100***
(0.025)
##
Constant -0.019
(0.172)
##

Observations 176
R2 0.162
Adjusted R2 0.153
Residual Std. Error 0.891 (df = 173)
F Statistic 16.761*** (df = 2; 173)
===
Note: *p<0.1; **p<0.05; ***p<0.01

Would you have expected the coefficient to HealthExp to be statistically significant (possible yes!) and would
you have expected it to be negative (possibly not!). May it be that countries that spend more on Health deal
less well with the Covid-19 pandemic? Or could it be that these explanatory variables are not exogenous and
that the estimated coefficients are biased?

It is important to understand a couple of properties of estimated regresison models. When we think about
regression models we have to make assumptions about the error terms ui. In particular we need to assume
thay are uncorrelated to the explanatory variables. Note that these error terms are unobserved! What a
regresison produces are estimated residuals ûi, but do note that these are not the same as the unobserved
error terms ui.

In fact it is a property of an OLS regresison that the estimated error terms, the residuals ûi, are in fact
uncorrelated with the explanatory variables. Let is demonstrate this.
cor(mod3$residuals,table3$GDPpc)

[1] -4.365801e-17
cor(mod3$residuals,table3$HealthExp)

[1] 4.205213e-17

Note the meaning of of e-17. 3.4e-17 basically means 3.4 · 10−17. So this is a very small number; basically
equal to 0.

The important point here is that we may well suspect that GDPpc and HealthExp are not exogenous, i.e
correlated with u. However, as we have just established is that both explanatory variables are actually
uncorrelated with û. This implies that we cannot use û to test properties of u.

22

	Introduction
	1. Some exploratory data analysis
	1.1 Getting started
	1.2 Import the data into R
	1.3 Data cleaning and Prep
	1.4 Plotting line charts for some countries
	1.5 Per-capita statistics, other standardisations and some graphical representations
	1.6 Correlations
	1.7 Plotting maps of COVID-19 data

	2 Hypothesis Testing
	3 Inference in Regression Analysis

