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1 Descriptive statistics for the relation between two or more

variables

When we considered graphical ways to describe data we already considered the situation of

having more than two variables. Very common graphical representations in such situations are

line graphs (with multiple lines) when dealing with time series data or scatter plots when dealing

with cross-sectional data. In particular scatter plots allowed us to visualise how two series were

related to each other.

Here we replicate a scatter plot used in an earlier section. This plot illustrates how the country

level 14-day covid case rate (in 2022, Week 10) relates to the countries Health expenditure as a

share of the countries GDP.

Figure 1: Scatter diagram, Health expenditure as percentage of GDP and 14-day Covid case

rate, as per Week 10 in 2022.

It is somewhat difficult to see from this plot whether there was indeed a positive relationship



between these two variables or not. In fact there are two aspects of a potential relationship you

may be interested in. First, is it a positive or negative relationship and second, how strong is

that relationship. In this section you will learn how to find numerical descriptive statistics that

describe both these aspects of such a relationship.

2 Correlation

A commonly used measure of association is the sample correlation coefficient, which is designed

to tell us something about the characteristics of a scatter plot of observations on the variable

Y against observations on the variable X. In particularly, are higher than average values of Y

associated with higher than average values of X, and vice-versa? In the context of the above

example we would ask whether higher values of health expenditure (as % of GDP) are related

to higher Covid infection rates.

Consider the following data-set in which we observe the weight (Yi) measured in pounds and

the height (Xi) measured in inches of a sample of 12 people:

i

Variable 1 2 3 4 5 6 7 8 9 10 11 12

Weight = Yi 155 150 180 135 156 168 178 160 132 145 139 152

Height = Xi 70 63 72 60 66 70 74 65 62 67 65 68

The best way to graphically represent the data is the following scatter plot:

Figure 2: Scatter diagram, Weight and Height.
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On this graph a horizontal line at y = 154.1667 (at the sample mean ȳ) and also a vertical line

at x = 66.8333 (at the sample mean x̄) are superimposed. This creates four areas. Points in the

upper right quadrant are those for which the weight is higher than average and height is higher

than average. One of these points (Observation i = 3 with yi = 180, xi = 72) is highlighted in

the scatter plot along with its deviations from x̄ and ȳ.

Points in the lower left quadrant are those for which weight is lower than average and height is

lower than average. Since most points lie in these two quadrants, this suggests that higher than

average weight is associated with higher than average height; whilst lower than average weight

is associated with lower than average height. This is typical for a positive relationship between

X and Y . If there was no association, we would expect to see a roughly equal distribution of

points in all four quadrants.

While it is often straightforward to see the qualitative nature of a relationship (positive, negative

or unrelated) we want a numerical measure that describes this relationship such that we can

also comment on the strength of the relationship. The basis of such a measure are again the

deviations from the sample mean (as for the calculation of the variance and standard deviation),

but now we have two such deviations for each observation, the deviation in the Y variable,

dy,i = (yi − ȳ), and the deviation in the X variable, dx,i = (xi − x̄). These are the deviations

you can see in the above Figure.

In the case of the third observation with y3 = 180 and x3 = 72 we can see that both values are

larger than the respective sample means ȳ and x̄ and therefore both, dy,i and dx,i are positive.

dy, i = (yi − ȳ) = 180-154.1667 = 25.8333

dx, i = (xi − x̄) = 72-66.8333 = 5.1667

In fact this will be the case for all observations that lie in the upper right quadrant. For obser-

vations in the lower left quadrant we will find dy,i and dx,i to be smaller than 0. Observations

in both these quadrants are reflective of a positive relationship. We therefore need to use the

information in dy,i and dx,i in such a way that in both these cases we get a positive contribution

to our statistic that numerically describes the relationship. Consider the term (dy,i · dx,i); this
term will be positive for all observations in either the upper right or lower left quadrant. For

values in either the upper left or lower right quadrant, however, the terms dy,i and dx,i will

have different signs and hence the term (dy,i · dx,i) will be negative, reflective of the fact that

observations in these quadrants are representative of a negative relationship.

It should now be no surprise to find that our numerical measure of a relationship between two

variables is based on these terms. In particular we will use what is called the sample covariance:

Cov(X,Y ) = sX,Y =
1

n− 1

n∑
i=1

(xi − x̄) (yi − ȳ)
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You can see that this is the sum of the dy,i and dx,i divided by n− 1. The reason for dividing

by n− 1 and not n is similar to the reasoning used for the sample variance. In fact the measure

that we typically use is the correlation coefficient :

Corr(X,Y ) = rXY =
sX,Y√
s2Xs2Y

=
1

n−1

∑n
i=1 (xi − x̄) (yi − ȳ)√

1
n−1

∑n
i=1 (xi − x̄)2 1

n−1

∑n
i=1 (yi − ȳ)2

=

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2

It is the sample covariance divided by the square root of the product of the two sample variances.

In the last line we merely cancelled out the 1/(n− 1) terms.

Excel application

The calculations are best done in a Table format or using Excel.

This video shows the calculations by hand (YouTube, 21min).

This video shows the calculations by Excel (YouTube, 11min).

If you calculate r for the above example you should obtain a value of

Corr(X,Y ) = rXY =
616.3333√

2659.6667 · 191.6667
= 0.8632

Exercise

Complete the table below and calculate, sample means, sample variances and standard devia-

tions, the sample covariance and the correlation for the following four observations of Y and

X.

ȳ = 8

x̄ = 4

s2Y = 18.6667

s2X = 30

Cov(X,Y ) = sY,X = −16

r = −0.6761
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Obs Weight (Y) Height (X) yi − ȳ xi − x̄ (yi − ȳ)2 (xi − x̄)2 (yi − ȳ)(xi − x̄)

1 155 70 0.8333 3.1667 0.6944 10.0278 2.6389

2 150 63 -4.1667 -3.8333 17.3611 14.6944 15.9722

3 180 72 25.8333 5.1667 667.3611 26.6944 133.4722

4 135 60 -19.1667 -6.8333 367.3611 46.6944 130.9722

5 156 66 1.8333 -0.8333 3.3611 0.6944 -1.5278

6 168 70 13.8333 3.1667 191.3611 10.0278 43.8056

7 178 74 23.8333 7.1667 568.0278 51.3611 170.8056

8 160 65 5.8333 -1.8333 34.0278 3.3611 -10.6944

9 132 62 -22.1667 -4.8333 491.3611 23.3611 107.1389

10 145 67 -9.1667 0.1667 84.0278 0.0278 -1.5278

11 139 65 -15.1667 -1.8333 230.0278 3.3611 27.8056

12 152 68 -2.1667 1.1667 4.6944 1.3611 -2.5278

Sum 1850 802 0 0 2659.6667 191.6667 616.3333

Table 1: Table illustrating the calculations required to calculate a covariance. Values rounded

to 4dp.

Obs Weight (Y) Height (X) yi − ȳ xi − x̄ (yi − ȳ)2 (xi − x̄)2 (yi − ȳ)(xi − x̄)

1 4 10 -4 6 16 36 -24

2 8 -2 0 -6 0 36 0

3 6 7 -2 3 4 9 -6

4 14 1 6 -3 36 9 -18

Sum 32 16 0 0 56 90 -48

Table 2: Correlation calculation exercise.

A few things are worth noting with respect to the correlation coefficient :

� It can be shown algebraically that −1 ≤ r ≤ 1.

� Positive (negative) numbers represent a positive (negative) relationship and a value of 0

represents the absence of any relationship. In our example r = 0.863 and hence the two

variables display a strong positive correlation.

� The numerator contains the sum of the discussed cross products dy,i ·dx,i = (yi− ȳ)(xi− x̄)

� The term in the denominator of the equation for r is related to the variances of Y and X.

These terms are required to standardise the statistic to be between -1 and 1.

� For the correlation the order of variables does not matter, i.e. rXY = rY X .

5



Figure 3: Correlation coefficient, strength and direction

The covariance is actually also a measure of the relationship between these two variables, but

it has many of the same shortcomings as the variance (see the Descriptive Statistics lesson).

Therefore we want a standardised measure (to ensure that −1 ≤ r ≥ 1. This standardisation

uses the square root of the two respective variances.

There are two very important limitations of the correlation coefficient :

1. In general, this sort of analysis does not imply causation, in either direction. Variables

may appear to move together for a number of reasons and not because one is causally

linked to the other.

For example, over the period 1945-64 the number of TV licences (x) taken out in the UK

increased steadily, as did the number of convictions for juvenile delinquency (y). Thus a

scatter of y against x, and the construction of the sample correlation coefficient reveals

an apparent positive relationship. However, to therefore claim that increased exposure to

TV causes juvenile delinquency would be extremely irresponsible.

Another example illustrating that correlation must not be mis-interpreted as a causal

relationship is that of ice cream sales and shark attacks, illustrated in the following image.
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Figure 4: Correlation is not causation

If we were to calculate a correlation between the two series we clearly would obtain a

positive correlation. But nobody would suggest that increased ice-cream sales cause shark

attacks, or indeed that increased shark attacks caused higher ice cream sales.

2. The sample correlation coefficient gives an index of the apparent linear relationship only.

It assumes that the scatter of points must be distributed about some underlying straight

line. This is discussed further below. However, the term relationship is not really confined

to such linear relationships.

Consider the relationship between age and income. If we were to plot observations for

the age and income of people in the age range of 20 to 50 we will clearly find a positive

relationship. However, if we were to extend the age range to 80, we would most likely see

that income decreases that the upper end of the age range. Therefore there is no linear

age/income relationship across the full age range and the correlation coefficient cannot be

used to describe such a relationship.

Imagine drawing a straight line of best fit through the scatter of points in the above Figure

(for height and weight) simply from visual inspection. You would try and make it go through

the scatter, in some way, and it would probably have a positive slope. Numerically, one of the

things that the correlation coefficient does is assess the slope of such a line: if r > 0, then the

slope of the line of best fit should be positive, and vice-versa. Moreover, if r is close to either 1

(or -1) then this implies that the scatter is quite closely distributed around the line of best fit.

What the correlation coefficient doesn’t do, however, is tell us the exact position of line of best

fit. This is achieved using regression analysis.
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Figure 5: Scatter plots and correlation

Exercise

Consider the following Figure which displays six scatterplots

Figure 6: Scatter plots of six bivariate data samples.

Match the correlations to the plots with the correlations. Note that the scales are identical for

all plots.:

� r1 = 0.9226
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� r2 = −0.8835

� r3 = 0.9931

� r4 = −0.9936

� r5 = −0.1988

� r6 = 0.4813

Feedback: The sign of the correlation tells you whether the correlation is positive or negative.

The strength of the correlation tells you how close the points are to a straight line (not shown

here but in the next section).

2.1 Additional resources

� Khan Academy: Do not confuse correlation with causation

3 Regression

When thinking about correlations you learned that correlation values close to 1 or -1 imply that

the points will lie close to an imaginary line, the ”line of best fit”. The following image shows

the six scatter plots we looked at above but now including the lines of best fit.

The lines of best fit drawn on the scatter can be represented algebraically as a + bx. Here x

represents the value on the horizontal axis, a is the intercept (i.e. the value on the vertical

axis at x = 0) and b is the slope (i.e. the value by which the line increases as we increase

x by one unit). The line is defined at any value of x and not only those at which we have

actual observations. Here you can see the line of best for for sample 1 with an indication of

the intercept (a) and the slope (b). For the data in Sample 1 these values are a = −0.34 and

b = 1.1327. Just take these as given for now, you will shortly learn how to calculate these.
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Figure 7: Scatter plots of six bivariate data samples and lines of best fit.

Figure 8: Scatter plot for Sample 1 and line of best fit (red).

When you substitute any of the observed values xi into the line of best fit you get ŷi = a+ bxi.

It is important to note that the result of this operation, ŷi is not the same as yi. Let us illustrate
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this in the above scatter plot. One of the scatter points is for xi = 6 and yi = 9 (the point is

highlighted in red in the next plot.) If we plug in the values for a and b, we get

ŷi = a+ bxi = −0.34 + 1.1327 · 6 = 6.4562

The difference between the two is what is often called the residual:

resi = yi − ŷi = yi − (a+ bxi) = yi − a− bxi.

Here that residual is resi = yi − ŷi = 9− 6.4562 = 2.538.

Figure 9: Scatter plot for Sample 1, line of best fit and example residual.

Exercise

Calculate the residual for the following two observations: x1 = 2 and y1 = 3 as well as x2 = 8 and

y2 = 7.1 which are both points in the above scatter diagram. You will note that one residual is

positive and the other negative. What do these different signs represent in the scatter diagram?
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Figure 10: Scatter plot for Sample 1, line of best fit and example residual.

SOLUTION:

res1 = 3− ŷ1 = 3 + 0.34− 1.1327 · 2 = 3− 1.9254 = 1.0746

and

res2 = 7.1− ŷ2 = 7.1 + 0.34− 1.1327 · 8 = 7.1− 8.7216 = −1.6220

If the residual is positive this implies that yi > ŷi and hence that the point yi is above the

regression line. If the residual is negative this implies that yi < ŷi and hence that the point yi

is below the regression line.

Above we used the relationship resi = yi − a − bxi to calculate a residual. Re-arranging this

delivers the equation which we will typically use to describe a regression relationship:

yi = a+ bxi + resi

where a and b represented the intercept and slope coefficients for a particular line of best fit

arising from a particular sample (which is why we call a and b sample estimates - but more on

this in the inference section of the course). If we want to write this relationship in a general
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way, i.e. not specialised on a particular sample, but for the population of our data, then we

write:

yi = α+ βxi + ϵi

Here we have replaced the a and b with α and β and the residuals resi with ϵi. α and β represent

the unknown values of the intercept and slope parameters that describe a liner relationship

between yi and xi in the population. The error terms ϵi now represent error terms acknowledging

that, even in the population, the linear relationship will not precisely represent the data.

Only once we have a sample of data (as in the above table) we are able to find a line of best

(described by a and b). We should note that this line (and hence the a and b values) is unique

to the particular sample. A slightly different sample would have delivered different values for a

and b. (Note: This is not unique to a regression relationship. Assume you have a population

of values for some random variable mi with an unknown mean µm. Then you take a sample of

values from this population and obtain a sample mean, m̄. Had you taken a different sample,

this m̄ would also be different.)

3.1 Naming Conventions and Causation

In some sense estimating a regression model is not much different to calculating a correlation

between two variables, X and Y . When we did talk about correlations we also noted that

rXY = rY X , i.e. that the correlation between X and Y is identical to the correlation between

Y and X.

When undertaking a regression analysis this is not the case. The variables on the left hand side

and the right hand side have different functions and therefore we call them by different names,

such as dependent variable (on the left) and explanatory variable (on the right).

yi

dependent variable

explained variable

outcome variable

= α+ β xi
independent variable

explanatory variable

+ ϵi

Let’s continue thinking about the relationship between height and weight. Does it matter

whether we use height or weight as the dependent variable?

Exercise

Which of the two combinations do you think is more sensible?

13



□ Height = dependent variable and Weight = explanatory variable

□ Weight = dependent variable and Height = explanatory variable

HINT: Here it is pretty obvious that individuals do have some control over their weight, but

that ultimately their weight is to some degree a function of their height. Of course their weight

is not solely determined by their height (do not forget their diet and levels of activity), but

the height will play a role. Therefore Weight should be the dependent variable and height the

explanatory variable.

The important thing to realise here is that it is YOU who has to decide which variable is depen-

dent/explained and which is independent/explanatory. Sometimes this will be fairly obvious,

like in the height-weight example, but sometimes it is not. (Is it interest rates which determine

inflation or inflation which determines interest rates!!??). In any case, it is you who will have

to bring your economic knowledge to the question and decide. The software (like Excel) will

calculate regressions either way.

This issue is related to the very big question of whether you can interpret any relationship

described by a regression model as a causal relationship. In fact this is such a big question that

large parts of 2nd year Econometrics courses will be devoted to this question. There you will

learn that this is a fiendishly difficult (and therefore exciting!!! question). It is for now safe to

assume that any regression results you obtain do NOT describe a causal relationship.

So in that sense regression analysis is not much different to calculating correlations. This seems

to make the practice of using names like dependent and independent variables invalid. You can

use these names as long as you are aware that regression results do not automatically deliver

causal results. In fact, Excel will happily calculate results for both of the following regression

models

Heighti = α+ β Weighti + ϵi

and

Weighti = γ + δ Heighti + ϵi

They will produce different (yet related) intercept and slope coefficients which is the reason why

we named them differently above. The point is, the software will not be able to tell you which

of the two is the sensible way of looking at the data. It is your human understanding of the

problem which tells you that only the second makes sense.
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3.2 Estimation

Regression analysis is the statistical technique that finds the optimal values for α and β given

a particular sample. We will soon see how to determine the best values for α and β. Let us

return to the example of 12 observations with height (taking the role of x) and weight (in this

example representing y) data. Here is our previous scatter plot with the line of best fit.

Figure 11: Scatter diagram, Height and Weight example.

Exercise

Draw a line which you think best fits the 12 data points (If you are looking at this on a screen

take a ruler and hold it over the points). From your line, what can you say, roughly, about

the intercept and slope of that line (only use eye-balling here, we will get to the precise results

shortly).

� a correct for -30 to -70

� b correct for 2 to 4

Hint: On the graph you cannot see x = 0. But when eye-balling the line of best fit it drops by

around 60 weight units for a drop of 20 height units. That means that the slope is around 3.
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For a value of height = 60 the line of best fit has an approximate weight value of 130. If, for

every height unit drop the weight drops by about 3, then y should drop by 60 × 3 = 180 as x

goes from 60 to 0. Hence, the intercept a should be at approximately 130− 180 = −50.

Let’s now calculate the actual sample estimates a and b. And let’s do that precisely. But don’t

forget these values will be specific to that particular sample of 12 observations. We will continue

to not know what the true values α and β are and, if we had a different sample we would get

somewhat different values for a and b.

Before we do so we want to point out what optimal means in this context. In fact it implies

that we want to minimise the values for resi for all i = 1, ..., n observations in the sample.

Figure 12: Scatter diagram with linear regression, Height and Weight example.

In fact what we want to minimise is the sum of squared residuals

(y1 − ŷ1)
2 + (y2 − ŷ2)

2 + ...+ (y12 − ŷ12)
2 =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − a− bxi)
2.

This is equivalent to saying that we want to minimise the variation of our sample observations

around the regression line (a+bx). The technique of obtaining the best values for α and β, which

we call a and b, in this way is also known as ordinary least squares (OLS) since it minimises the

sum of squared deviations (sum of squared residuals) from the fitted line. We shall not dwell

on the algebra here (You have a function and want to chose the a and b such that the function
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is minimised ... two partial derivatives ... setting them to 0 ... solving for a and b ... you know

the drill), but the solutions to the algebraical problem are:

b =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
, a = ȳ − bx̄;

Here, as earlier, ȳ and x̄ are the sample means of variables y and x. Applying the technique to

the weight and height data yields b = 616.3333/191.6667 = 3.2157, and a = 154.1667− 3.2157 ·
66.8333 = −60.7491. All the numbers we need here were calculated in the earlier Table for this

example. This gives the smallest possible sum of squared residuals as 677.753, a value which is

not so easily read of the table. The regression line (line of best fit) is therefore defined as:

ŷ = −60.7491 + 3.2157× x

It turns out that this line should be quite close to the line of best fit I asked you to draw earlier.

As it turns out our eyes are pretty good in visual fitting. This is particularly easy if you have

the sample means of ȳ and x̄ available, as the line of best fit will always go through the point

ȳ, x̄.

Excel application

Video illustrating the estimation of a simple linear regresison in Excel, YouTube, 6min

When estimating the regression by EXCEL, the results are presented as follows:

Figure 13: EXCEL Regression Output.
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You can recognise that the sample estimates for the intercept and the slope appear in that

regression output (highlighted in yellow). We will interpret a number of further values from

that output as we go along. There is one which you should already recognise: The sample size

(Observations) of 12. Another one, a little less obvious is the value of 2659.667. It appears here

as ”SS Total” or Sum of Squares Total. Find that value in the Table from which we calculated

the correlation for this data set, it is
∑12

i=1(yi − ȳ)2. It measures the amount of variation we

can see in the dependent variable. What we want to achieve by using regression analysis is to

explain some of this variation through y’s linear relationship with x.

You can see from the regression output that here 74.5% of that variation is explained by that

linear relationship (see the ”R square” statistic at the top of the output.)

Exercise

1. Which of the following are equivalent to the OLS estimator b?

□ b =
∑n

i=1(xi−x̄)(yi−ȳ)∑n
i=1(xi−x̄)(xi−x̄)

□ b =
n
∑n

i=1(xi−x̄)(yi−ȳ)
n−1

∑n
i=1(xi−x̄)2

□ b =
n−1

∑n
i=1(xi−x̄)(yi−ȳ)

n−1
∑n

i=1(xi−x̄)2

□ b =
(n−1)−1

∑n
i=1(xi−x̄)(yi−ȳ)

(n−1)−1
∑n

i=1(xi−x̄)2

□ b = Cov(X,Y )
s2X

□ b = Cov(X,Y ) sY
sY s2X

□ b = Corr(X,Y ) sY
sX

Hint: All but the second are identical.

2. Earlier in this lesson you calculated a number of statistics for a sample of n = 4 data points:

Obs Y X

1 4 10

2 8 -2

3 6 7

4 14 1

Sum 32 16

Table 3: Regression line calculation exercise.
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The statistics calculated were:

ȳ = 8

x̄ = 4

s2Y = 18.6667

s2X = 30

Cov(X,Y ) = sY,X = −16

r = −0.6761

Please make sure you remember how to calculate these! Use this information to estimate the

sample estimates a and b, to obtain the line of best fit for the regression Yi = α+ βXi + ϵi.

b = Cov(X,Y )
s2X

= −16
30 = − 8

15)

a = ȳ − b · x̄ = 8− (− 8
15) · 4 = 120

15 + 32
15 = 152

15

3.3 Interpretation of regression equation

There are a number of issues that need to be stressed here. The first relates, yet again, to the

sample/population issue. In most cases the data available to run a regression will be sample

data. Recall how we previously discussed that the x̄ was the sample estimate for some unknown

population parameter µ or the sample variance, s2 was the sample estimate of some unknown

population variance, σ2. In the same spirit it turns out that the values of a and b that describe

the line of best fit, are sample estimates of some unknown population parameters (usually

labelled, α and β).

Also note that b is the slope of the fitted line, ŷ = a+ bx; i.e., the derivative of ŷ with respect

to x:

b = dŷ/dx

and measures the increase in ŷ for a unit increase in x.

Let us look at the height and weight example for which we established the regression line to be:

ŷ = −60.7491 + 3.2157 x

When you interpret regression results it is extremely important to be aware of the units in

which the dependent and explanatory variables are measured. In the case of the Height-Weight

example, the explanatory variable (Height, x) is measured in inches (1 inch = 2.54 cm) and the

dependent variable (Weight, y) is measured in pounds (1 pound = 1 lbs = 0.454 kg). Do not

ask why pounds are abbreviated as lbs. They are.

19



So, with that knowledge, how would we interpret the estimated slope coefficient, b = 3.2157?

To interpret this we need to adapt the general formula ”b measures the increase in ŷ for a unit

increase in x”. Applied to this example this implies the following:

� ”The expected weight (ŷ) increases by 3.2157 pounds for every height increase of 1 inch.”

� ”On average weight (ŷ) increases by 3.2157 pounds for every height increase of 1 inch.”

Recall that expectations are measured with averages, hence both expressions can be used.

The intercept in a regression, here a = −60.7491, sometimes, but not always, can be interpreted.

Note that the expected value, when the x variable takes the value of 0 (x = 0) is ŷ = a, and

that is how we interpret the intercept. If someone has a height of 0 inches then we would expect

the person to have a weight of -60.7491. This, of course, does not make any sense!!! There are

no people with a height of 0. Interpreting the intercept only makes sense if the value of x = 0

is a sensible value and inside the sample of values of x. In our example the smallest height is

60 inches and the largest height is 74 inches. So even interpreting the results for a height of 40

inches would not make sense as that as well would be outside the sample range.

3.4 Transformations of data

Numerically, transformations of data can affect the above summary measures. For example, in

the weight-height scenario, consider for yourself what would happen to the values of a and b

and the correlation if we were to use kilograms and centimetres rather than pounds and inches.

Convert the height of people from inches to cm (1 inch = 2.54 cm), but leaving the weight

unchanged, measured in lbs, what are the regression results and how would you interpret the

results?

Excel application

Video explaining the effect of re-scaling the explanatory variable, YouTube, 8min

The results as presented by EXCEL are shown here:

The estimated regression relationship is (noting that x is now measured in cm):

ŷ = −60.7461 + 1.2660 x

So the slope coefficient is smaller than the original ones which was 3.2157. Let’s calculate the

ratio of these two estimates: 3.2157/1.2660 = 2.54. As we multiplied the explanatory variable

by 2.54, this resulted in the slope coefficient being divided by the same amount. That is no

accident.
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Figure 14: EXCEL Regression Output.

What you basically did is best described by comparing the two regression models (giving the

regression parameters different names). We start by looking at the original model (using the

height measurement in inches):

Weight[lbs]i = α+ β Height[in]i + ϵi

Now we look at the regression model with height measured in centimeters but then convert it

to one where height is measured in inches.

Weight[lbs]i = γ + δ Height[cm]i + vi

Weight[lbs]i = γ + δ (2.54 ·Height[in]i) + vi

Weight[lbs]i = γ + 2.54 · δHeight[in]i + vi

If you now compare the coefficients you see that α = γ and indeed the new intercept is basically

identical to the originally estimated constant. Comparing the two models tells us, that the

slope coefficients should be related as follows: β = 2.54 · δ. And indeed, the original coefficient

estimated (in the inches model) is 2.54 times larger than that estimated in the centimeter model.

Exercise

1. Consider the following regression model:
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Weight[kg]i = η + ϕ Height[in]i + ϵi

How are the coefficients of this model related to those in the original model? Note that 1lbs =

0.454kg.

□ η = 0.454 · α and ϕ = 0.454 · β

□ 0.454 · η = α and 0.454 · ϕ = β

□ η = α and ϕ = 0.454 · β

□ η = α and 0.454 · ϕ = β

Hint: We go through a similar transformation process as in the previous example:

Weight[kg]i = η + ϕ Height[in]i + ui

0.454 ·Weight[lbs]i = η + ϕ Height[in]i + ui

Weight[lbs]i =
η

0.454
+

ϕ

0.454
Height[in]i +

1

0.454
ϵi

The last line is reformulated into the variables in their original units and hence we can compare

coefficients: η = 0.454 · α and ϕ = 0.454 · β.

2. Estimate the following regression model in EXCEL:

Weight[kg]i = η + ϕ Height[in]i + ϵi

Confirm that the estimated coefficients are indeed related to those in the original model as

suggested in the previous exercise.

Hint:

We find the intercept to be −27.5787 which is indeed approximately 0.454 · −60.7461 and the

slope to be 1.4599 which is approximately 0.454 · 3.2157.

In the examples above, the scatter plot of the data suggested that, indeed, if there was a relation-

ship between two variables, then that relationship was well described by a linear relationship,

i.e. a relationship which graphically follows, approximately, a straight line.

An important matter arises if we find that a scatter of a variable y against another, x, does not

appear to reveal a linear relationship. In such cases, linearity may be retrieved if y is plotted
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Figure 15: EXCEL Regression Output.

against some function of x (e.g., log(x) or x2, say). Indeed, there may be cases when Y also

needs to be transformed in some way. That is to say, transformations of the data (via some

mathematical function) may render a non-linear relationship “more” linear.

A particular interesting transformation often used for economics series is a log-log transfor-

mation, which means that both dependent and explanatory variables are a log transform. In

applied economics studies of demand, the log of demand (Q) is regressed on the log of price

(P ), in order to obtain the fitted equation (or relationship). Why does this make sense?

For example, suppose an economic model for the quantity demanded of a good, Q, as a function

of its price, P , is postulated as approximately being Q = αP β where α and β are unknown

parameters, with α > 0, β < 1 to ensure a positive downward sloping demand curve.

The nice thing about such a model is that the interpretation of β is the price elasticity of

demand. Recall that this elasticity is defined as (dQ/Q)/(dP/P ) = (dQ/dP )(P/Q). From the

above model you can derive that dQ/dP = αβP β−1. With that information we get the following

for the price elasticity in that model:

dQ

dP

P

Q
= αβP β−1P

Q

= αβP β−1 P

αP β

= αβ
P β

αP β

= β
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Why does that make estimating a log-log model so attractive? Take the log on both sides of the

postulated model you get log(Q) = α∗ + β log(P ), where α∗ = log(α). Thus, if n observations

are available, (qi, pi), i = 1, ..., n, a scatter plot of log(qi) on log(pi) should be approximately

linear in nature. This then suggests that a simple regression of log(qi) on log(pi) would provide

a direct estimate of the elasticity of demand which is given by the value β, namely the estimated

slope parameter.

4 Worked Example

Let’s think about a new example in which estimating a simple regression can provide some good

insight. You have all done Advanced Mathematics as a pre-requisite. Let’s call that variable M

and you are currently studying for your Advanced Statistics course (yes, if you are reading this

you are!! well done). Let’s call the variable for that grade S. At this stage you have your grade

for Maths, but not the one for Stats.

Let’s create a model with which we can predict your grade in Advanced Statistics. In the datafile

”Maths and Stats grades.xlsx” we have observations for 801 previous students for whom we know

the grades for both M and S, in other words, we have a sample (mi, si), i = 1, ..., n = 801.

(Note: the grades and names in the file are random but posess identical features as the real

data in previous academic years.)

Let’s first look at a scatter plot for these data.

There are a number of observations from this plot:

� Each point represents one student and displays that students Advanced Maths and Ad-

vanced Stats grade, e.g. Ronan who had a grade of 29 in Advanced Maths and a grade of

66 in Advanced Stats)

� Clearly there is a positive relationship, students with higher grades in Maths tend to get

higher grades in Stats as well.

� However, even for students with the same Advanced Maths grade (see the blue dots

which represent the students with an Advanced Maths grade of 50) there is large range of

Advanced Maths grade outcomes (here from 29 to 80).

Exercise

1. Which of the following two regression specifications is most sensible?

□ si = α+ β mi + ϵi
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Figure 16: Advanced Maths and Stats grades for 801 fictional students.

□ mi = α+ β si + ϵi

2. Estimate your chosen regression.

You get it right if the ”Multiple R” statistics is 0.4611743.

What is the estimated intercept? a = 26.4310

What is the estimated slope coefficient? b = 0.5418

What is the interpretation of the estimated intercept? (one correct answer only)

□ A student who got a grade of 26 in Advanced Mathematics should expect to get a grade

of 0 in Advanced Statistics.

□ A student who got a grade of 26 in Advanced Mathematics should expect to get a grade

of 26 in Advanced Statistics.

□ A student who got a grade of 0 in Advanced Mathematics should expect to get a grade of

26 in Advanced Statistics.

□ One should not interpret the intercept as no grades close to 0 in Advanced Maths were

included in the sample.
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Hint: You should not interpret the intercept if the value of 0 for the explanatory variable (here

the Advanced Maths grade) is not included inside the range of the observed values.

What is the interpretation of the estimated slope coefficient? (one correct answer only)

□ For every extra grade in Advanced Maths students should expect an additional 0.54 grade

in Advanced Statistics.

□ For every extra grade in Advanced Maths students will get an additional 0.54 grade in

Advanced Statistics.

□ In order to get an additional grade in Advanced Statistics you should improve your Ad-

vanced Maths grae by 0.54.

□ 54% of the variation in the Advanced Statistics grades can be explained by variation in

the Advanced Mathematics grades.

Hint: Apply the generic: ”b measures the increase in ŷ for a unit increase in x”. So the correct

answer is the first.

3. What percentage of the variation in the Advanced Statistics grades is explained by this

model? R2 = 0.2127

4. If you had an Advanced Mathematics grade of 50, what would be your expected Advanced

Statistics grade?

(̂s) = 26.4310 + 0.5418 · 50 = 53.521

4.1 Additional resources

� Khan Academy: Setup of the OLS problem and how to proof that the above formulae for

a and b ([https://www.khanacademy.org/math/probability/regression/regression

-correlation/v/squared-error-of-regression-line] and four follow on clips - click

on ”up next” at the end of each clip). But be careful, in his video Salman Khan uses m

for what we call b and b for what we call a. Life is never easy!

� Link to a full (55min) undergraduate, introductory lecture on regression [http://www.

youtube.com/watch?v=AHAlqJTrPHE&list=PLW7MJJThJQQs3djo1EL6KCRFeCa6wpfYY].

Minutes 1 to 22 are relevant for this lesson.
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