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1 Introduction

In the Discrete random variables Section, we introduced the notion of a random variable and, in

particular a discrete random variable. It was then discussed how to use mathematical functions

in order to assign probabilities to the various possible numerical values of such a random variable.

A probability distribution is a method by which such probabilities can be assigned and in the

discrete case this can be achieved via a probability mass function (pmf). We then discussed

how a cumulative distribution function (cdf) calculates probabilities for all outcomes smaller

than a particular value. Last we discussed several important examples of discrete probability

distributions, including the Bernoulli distribution, the Binomial distribution, the Geometric

distribution and the Poisson distribution.

The distributions discussed in the previous section are useful for random variables that have a

discrete number of possible outcomes. However, some random variables can take outcomes on

a continuous scale and statisticians have derived several important continuous distributions to

be able to model such random variables.

We will soon see a more formal definition and example of distributions for continuous random

variables. Before we see them, an understandings of continuous random variables is required.

This is what we turn to now.

2 Continuous random variables

Recall that a random variable is a function applied on a sample space, by which we mean that

physical attributes of a sample space are mapped (by this function) into a number. When a

continuous random variable is applied on a sample space, this implies that the function can be

applied to a continuous range of possible numbers (not just discrete numbers as with a discrete

random variable). In Figure 1 you can see two random variables. The number of dogs a family

owns, which can take values 0, 1, 2, 3 etc. (and hence it is a discrete variable, you cannot own



2.5 dogs). The other would be the weight of a person which can take values on a continuous

scale, and not only discrete values.

Figure 1: Discrete and continuous random variable

As a further example, let X = ‘the contents of a reservoir’, where the appropriate sample space

under consideration allows for the reservoir being just about empty, just about full or somewhere

in between. Here we might usefully define the range of possible values for X as 0 < X < 1, with

0 signifying ‘empty’ and 1 signifying ‘full’. When talking about the characteristics of continuous

variables, we can not list all possible outcomes for X; any value in the interval is possible. The

sample space is defined by an interval. That intervall could be a closed interval, such as [0, 1] or

an open interval such as (−∞,∞) or [0,∞]. Make sure you understand on which interval the

random variable is defined.

When we talk about probability distributions for continuous random variable we will also have

two representations of the same information. The cumulative distribution function (cdf) which

has exactly the same meaning as for discrete random variables, and the probability density

function (pdf) which does for continuous random variables what the probability mass function

(pmf) does for discrete random variables.

2.1 Probability density function (pdf)

In the discrete random variable section, we showed that the probability distribution of a discrete

random variable can be represented by a histogram, being a graphical representation of the

probability mass function (pmf). The equivalent representation for a continuous random variable

is a prebability density function (pdf).

The following figure gives you (on the left hand side) a representation of a typical pmf and on

the right hand side a representation of a typical pdf.
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Figure 2: Probability mass function and Probability density function

Given that the sample space of a continuous random variable is not just discrete numbers, how

do we distribute probability for such a continuous random variable? The probability must be

distributed over the range of possible values for X; which, in the reservoir example, is over

the unit interval (0, 1). As shown by Figure 2, unlike the discrete case where a specific mass

of probability is dropped on each of the discrete outcomes, for continuous random variables

probability is distributed smoothly over the whole interval of defined possible outcomes. This

is what we call a probability density function (pdf)

In a histogram (representing a pmf) the height of the bars represented the probability of that

particular outcome. When summing up all such probabilities you would get the value one. The

probability density function (pdf) for a CONTINUOUS random variable is a curve, f(x),

that shows the probability of a range of values as the area under the curve.

This is illustrated in Figure 3. The area underneath the pdf between a and b represents the

probability that the random variable X will take a value between a and b, Pr(a ≤ X ≤ b). Any

such value will be smaller or equal to 1 and the area underneath the entire pdf will be equal to

one.
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Figure 3: Probability density function

Some thought should convince you that for a continuous random variable, X, it must be the

case that Pr(X = a) = 0 for all real numbers a contained in the range of possible outcomes

of X. If this were not the case, then the axioms of probability would be violated. However,

there should be a positive probability of X being close, or in the neighbourhood, of a. (A

neighbourhood of a might be c ± 0.01, say.) For example, although the probability that the

reservoir is exactly 90% full must be zero.

This can be difficult to grasp. When we are talking about the reservoir being exactly 90% full,

given this is a continuous variable, we are really thinking about 90.00000000000%. It would be

impossible to assign a positive probability to every exact outcome. If we did assign a positive

probability to an infinite number of possible outcomes then these probabilities would sum to

more than one! This emphasizes that we cannot think of probability being assigned at specific

outcomes, rather probability is distributed over intervals of outcomes.

We therefore must confine our attention to assigning probabilities of the form Pr(a < X ≤ b)

, for some real numbers a < b ; i.e., what is the probability that X takes on values between

a and b? it is the area under the probability density function between a and b which provides

that probability, not the probability density function itself. Thus, by the axioms of probability,

if a and b are in the range of possible values for the continuous random variable, X, then

Pr(a < X ≤ b) must always return a positive number, lying between 0 and 1, no matter how

close b is to a (provided only that b > a).

Example. Below is a pdf for a random variable which is defined on the interval between 150

and 190. This means the random variable cannot take any values outside this interval.
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Figure 4: Probability density function

1. Match the area

For example, Pr(150 < X ≤ 160) 1

Pr(160 < X ≤ 170)

Pr(180 < X ≤ 190)

Pr(160 < X ≤ 180)

2. TRUE or FALSE

Pr(X = 170) > 0

Pr(150 < X ≤ 190) = 1

Pr(160 < X ≤ 170) = Pr(160 ≤ X ≤ 170)

Let’s summarise what we know about continuous random variables:

� Pr(X = x) = 0.

� The probability that X has a value between a and b is written Pr(a < X ≤ b).

� Area below the pdf curve as a measure of probability

Recall that random variables are functions which assign probabilities to outcomes. What sorts

of mathematical functions can usefully serve as probability density functions? To develop the
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answer to this question, we begin by considering another question: what mathematical functions

would be appropriate as cumulative distribution functions (cdf)?

2.2 Cumulative distribution function (cdf)

For a CONTINUOUS random variable, X, defined on (−∞,∞), the cdf is a smooth contin-

uous function defined as

F (x) = Pr(X ≤ x)

for all real numbers x; e.g., F (0.75) = Pr(X ≤ 0.75).

Therefore, the type of probabilities we are looking at now are a special case of the interval

probabilities we discussed previously, as F (0.75) = Pr(X ≤ 0.75) = Pr(−∞ < X ≤ x).

But looking at this special case will make our job somewhat easier for starters. The following

should be observed:

� such a function is defined for all real numbers x, not just those which are possible realisa-

tions of the random variable X;

� we use F (.), rather than P (.), to distinguish the cases of continuous and discrete random

variables, respectively.

Let us now establish the mathematical properties of such a function. We can do this quite simply

by making F (.) adhere to the axioms of probability. Firstly, since F (x) is to be used to return

probabilities, it must be that 0 ≤ F (X) ≤ 1, for all x.

Secondly, it must be a smooth, increasing function of x (over intervals where possible values

of X can occur). To see this, we will have to think carefully. Take two arbitrary numbers a

and b, satisfying −∞ < a < b < ∞. Notice that a < b; b can be as a close as you like to a,

but it must always be strictly greater than a. Therefore, the axioms of probability imply that

Pr(a < X ≤ b) > 0, since the event ‘a < X ≤ b’ is possible. Now divide the real line interval

X = (−∞, b] into two mutually exclusive intervals, X = (−∞, a] and X = (a, b]. Then we can

write the event ‘X ≤ b’ as

(X ≤ b) = (X ≤ a) ∪ (a < X ≤ b)

Assigning probabilities on the left and right, and using the axiom of probability concerning the

allocation of probability to mutually exclusive events, yields

Pr(X ≤ b) = Pr(X ≤ a) + Pr(a < X ≤ b)
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or

Pr(X ≤ b)− Pr(X ≤ a) = Pr(a < X ≤ b)

Now, since F (b) = Pr(X ≤ b) and F (a) = Pr(X ≤ a), we can write

F (b)− F (a) = Pr(a < X ≤ b) > 0

Thus F (b) − F (a) > 0, for all real numbers a and b such that b > a, no matter how close.

You should note that we have now reconstructed the interval probability which we discussed in

the previous Section, Pr(a < X ≤ b), as a function of what we now call a cumulative density

function. We also previously discussed that Pr(a < X ≤ b) > 0 on the range on which X is

defined (i.e. between −∞ and ∞ in the generic example) and therefore we know that F (x) must

be an increasing function. A little more delicate mathematics shows that it must be a smoothly

increasing function 1. All in all then, F (x) appears to be smoothly increasing from 0 to 1 over

the range of possible values for X.

More generally, we now formally state the properties of a cdf.

2.2.1 Properties of the cdf

A cumulative distribution function is a mathematical function, F (x), satisfying the following

properties:

1. 0 ≤ F (x) ≤ 1.

2. If b > a then F (b) ≥ F (a); i.e., F is increasing. In addition, over all intervals of possible

outcomes for a continuous random variable, F (x) is smoothly increasing; i.e., it has no

sudden jumps.

3. F (x) → 0 as x → −∞; F (x) → 1 as x → ∞; i.e., F (x) decreases to 0 as x falls, and

increases to 1 as x rises.

For complete generality, F (x) must be defined over the whole real line even though in any given

application the random variable under consideration may only be defined on an interval of that

real line. Such an example would be if we were to look at the water level in a reservoir which

is defined on the interval 0 (empty) to 1 (100% full).

1This is due to the fact that Pr(X = b) = 0 which implies that we are not getting any discrete changes from

F (b− ϵ) to F (b).
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Any function satisfying the above may be considered suitable for modelling cumulative proba-

bilities, Pr(X ≤ x), for a continuous random variable. Careful consideration of these properties

reveals that F (x) can be flat (i.e., non-increasing) over some regions. This is perfectly accept-

able since the regions over which F (x) is flat correspond to those where values of X cannot

occur and therefore, zero probability is distributed over such regions. In the reservoir example,

F (x) = 0, for all x ≤ 0, and F (x) = 1, for all x ≥ 1; it is therefore flat over these two regions of

the real line. This particular examples also demonstrates that the last of the three properties

can be viewed as completely general; for example, the fact that F (x) = 0, in this case, for all

x ≤ 0 can be thought of as simply a special case of the requirement that F (x) → 0 as x → −∞.

Some possible examples of cdfs, in other situations, are depicted in the following Figure 5.

Figure 5: Cumulative distribution function

� The first of these is strictly increasing over the whole real line, indicating possible values

of X can fall anywhere.

� The second is increasing, but only strictly over the interval x > 0; this indicates that

the range of possible values for the random variable is x > 0 with the implication that

Pr(X ≤ 0) = 0.

� The third is only strictly increasing over the interval 0 < x < 2, which gives the range of

possible values for X in this case; here Pr(X ≤ 0) = 0, whilst Pr(X ≥ 2) = 0.

In practice we will often be interested in interval probabilities of the type Pr(a < X ≤ b).

Therefore, let us end this discussion by re-iterating how probabilities and the cdf are related to

each other:
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� Pr(a < X ≤ b) = F (b)− F (a), for any real numbers a and b;

� Pr(X > a) = 1 − F (a), since F (a) = Pr(X ≤ a) and Pr(X ≤ a) + Pr(X > a) = 1, for

any real number a;

� Pr(X < a) = Pr(X ≤ a), since Pr(X = a) = 0.

Visually the pdf illustrates how all of the probability is distributed over possible values of

the continuous random variable. The pdf is also a mathematical function satisfying certain

requirements in order that the axioms of probability are not violated. We also pointed out that

it would be the area under that function which yielded probability. Note that this is in contrast

to the cdf, F (x), where the function itself gives probability.

Consider the following cdf:

Figure 6: Cumulative distribution function

Example. What are the following probabilities?

□ F (−0.7) = 0.25

□ Pr(x ≤ −0.7) = 0.25

□ Pr(x ≤ 0.2) = 0.5
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□ Pr(x ≤ 2.2) = 0.9

□ F (0.2) = 0.5

□ F (0.9) = 0.9

□ Pr(x > 0.2) = 0.5

□ Pr(x > 2.2) = 0.1

□ Pr(−0.7 < X ≤ 0.2) = F (0.2)− F (−0.7) = 0.5− 0.25 = 0.25

□ Pr(−0.7 < X ≤ 2.2) = F (2.2)− F (−0.7) = 0.9− 0.25 = 0.65

□ Pr(0.2 < X ≤ 2.2) = F (2.2)− F (0.2) = 0.9− 0.5 = 0.4

Example. Which expressions are correct (multiple correct answers are possible)?

□ F (0.9) = Pr(X ≥ 0.9)

□ F (0.2) = Pr(X ≤ 0.2)

□ Pr(X > 0.5) = F (0.5)− 1

□ Pr(X > 0.3) = 1− F (0.3)

□ Pr(X < 0.66) = Pr(X ≤ 0.66)

□ Pr(0.3 < X ≤ 0.6) = F (0.3)− F (0.6)

□ Pr(0.23 < X ≤ 0.68) = F (0.68)− F (0.23)

We shall now investigate the relations between pdf and cdf.

2.3 Relations between pdf and cdf

As discussed above, there is a smooth, increasing, function F (x), the cdf, which provides Pr(X ≤
x). In particular

Pr(a < X ≤ b) = F (b)− F (a)

for real numbers b > a. Also, since F (x) is smoothly continuous and differentiable over the

range of possible values for X (see the above Figure 5 with different cdfs), then there must

exist a function f(x) = dF (x)/dx, the derivative of F (x). Note that f(x) must be positive over
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ranges where F (x) is increasing; i.e., over ranges of possible values for X. On the other hand,

f(x) = 0, over ranges where F (x) is flat; i.e., over ranges where values of X cannot occur.

Moreover, the Fundamental Theorem of Calculus (which simply states that differentiation is the

opposite of integration) implies that if f(x) = dF (x)/dx, then

F (b)− F (a) =

∫ b

a
f(x) dx

We therefore have constructed a function f(x) = dF (x)/dx, such that the area under it yields

probability (recall that the integral of a function between two specified limits gives the area

under that function). Such a function, f(x), is the probability density function.

In general, lima→−∞F (a) = 0, so by letting a → −∞ in the above we can define the fundamental

relationship between the cdf and pdf as:

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(t) dt

f(x) = dF (x)/dx

i.e., F (x) is the area under the curve f(t) up to the point t = x. Now, letting x → ∞, and

remembering that limx→∞F (x) = 1, we find that

∫ ∞

−∞
f(x) dx = 1

i.e., total area under f(x) must equal 1 (rather like the total area of the sample space as depicted

by a Venn Diagram).

These definitions are all quite general so as to accommodate a variety of situations; however, as

noted before, implicit in all of the above is that f(x) = 0 over intervals where no probability is

distributed; i.e., where F (x) is flat.

Let’s return to the previously mentioned reservoir example. Here we have that the random

variable is limited to take values between 0 (empty) and 1 (full):

F (x) =

∫ x

0
f(t) dt, 0 < x < 1

for some suitable function f(.), since f(t) = 0 for all t ≤ 0, and all t ≥ 1. For example, suppose

the contents of the reservoir can be modelled by the continuous random variable which has

probability density function
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−1 −0.5 0.5 1 1.5 2

2

4

x

f(x)

−1 −0.5 0.5 1 1.5 2

0.5

1

1.5

x

F (x)

f(x) =

3(1− x)2, 0 ≤ x ≤ 1

0, otherwise

We can then calculate the probability that the reservoir will be over 75% full as:

Pr(X > 0.75) =

∫ 1

0.75
3(1− x)2 dx = −[(1− x)3]10.75 = (1/4)3 = 1/64

When looking at the cdf and pdf you can see that they are related. Where the pdf is high, here

at low levels close 0, the cdf increases steeply. Where the pdf has low values, here close to 1,

the cdf increases, but very slowly. This is not surprising as we now understand the the pdf is

the derivative of the cdf.

Now we will move on to another example. The following Figure gives another simple example

of how the cdf and pdf are related to each other. Here probability is distributed uniformly over

a finite interval (in this case, it is the unit interval [0, 1]). Such a distribution is therefore said

to be uniform and

F (x) =


0, x < 0

x, 0 ≤ x ≤ 1

1, x > 1

f(x) =


0, x < 0

1, 0 ≤ x ≤ 1

0, x > 1
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Figure 7: pdf and cdf

For example,

Pr(0.25 < X ≤ 0.5) = F (0.5)− F (0.25) = 1
2 − 1

4 = 1
4 .

Alternatively, using the pdf,

Pr(0.25 < X ≤ 0.5) =
∫ 0.5
0.25 f(x)dx = 0.25.
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Figure 8: cdf and pdf

Also note that the total area under f(x), over the unit interval, is clearly equal to 1.

From the two examples we looked at we can conclude that for relationship between cdf and pdf

the following properties follow:

� f(x) ≥ 0.

�

∫∞
−∞ f(x)dx = 1

� f(x) = dF (x)/dx

� F (x) =
∫ x
−∞ f(t)dt

� Probabilities can be calculated as: Pr(a < X ≤ b) =
∫ b
a f(x)dx i.e., it is the area under

the pdf which gives probability

Example (ADD VIDEO WITH WORK THROUGH). Let the random variable X denote the

time a person waits for an elevator to arrive. Suppose the longest one would need to wait for

the elevator is 2 minutes, so that the possible values of X (in minutes) are given by the interval

[0,2] . A possible pdf for X is given by
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0.5

1

1.5

x

f(x)

f(x) =


x, 0 ≤ x ≤ 1

2− x, 1 < x ≤ 2

0, otherwise

This is what we call a piecewise definition of a pdf as the pdf is expressed in different functions

for different intervals.

The graph of f(x) is given below

1. Calculate the probability that a person waits less than 30 seconds (or 0.5 minutes) for the

elevator to arrive. Pr(0 ≤ X ≤ 0.5) =
∫ 0.5
0 f(x)dx =

∫ 0.5
0 xdx = x2

2

0.5

0
= 0.125

2. Find the corresponding cdf.

First, let’s find the cdf at two possible values of X, x = 0.5 and x = 1.5

F (0.5) =
∫ 0.5
−∞ f(t)dt =

∫ 0.5
0 tdt = t2

2

0.5

0
= 0.125

F (1.5) =
∫ 1.5
−∞ f(t)dt =

∫ 1
0 tdt+

∫ 1.5
1 (2−t)dt = t2

2

1

0
+(2t− t2

2 )
1.5
1 = 0.5+(1.875−1.5) = 0.875

Note that we had to use different integrals for the [0, 1] and the (1, 1.5] interval.

3. Now we find F (x) more generally, working over the intervals for which f(x) has different

definitions:

for x < 0: F (x) =
∫ x
−∞ 0dt = 0

for 0 ≤ x ≤ 1: F (x) =
∫ x
0 tdt = t2

2

x

0
= x2

2

for 1 < x ≤ 2: F (x) =
∫ 1
0 tdt+

∫ x
1 (2− t)dt = t2

2

1

0
+(2t− t2

2 )
x
1 = 0.5+(2x− x2

2 )−(2−0.5) =

2x− x2

2 − 1

for x > 2: F (x) =
∫ x
−∞ f(t)dt = 1
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−1 1 2 3

0.5

1

1.5

x

F (x)

Putting this altogether, we write F as a piecewise function and the graph of F (x) is given below:

F (x) =



0, x < 0

x2

2 , 0 ≤ x ≤ 1

2x− x2

2 − 1, 1 < x ≤ 2

1, x > 2

Example. Consider the following pdf for a random variable defined on the interval [0, 1]:

f(x) = −
(
x− 1

4

)2

+
55

48

on the interval [0, 1] and 0 otherwise.

What is the cdf F (x)?

F (x) =


0, x < 0

−1
3(x− 1

4)
3 + 55

48x− 1
192 , 0 < x ≤ 1

1, x > 1

Hint: You need to find the integral of f(x) from 0 to x:
∫ x
0 f(x)dx.

f(x) =
∫ x
0

(
−
(
x− 1

4

)2
+ 55

48

)
dx =

[
−1

3(x− 1
4)

3 + 55
48x

]x
0
= −1

3(x− 1
4)

3 + 55
48x− 1

192

The pdf and cdf look as follows:

Example. Which of the following pdfs (left column) match with which cdfs (right column)?
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1
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x

f(x)

−1 1 2 3

0.5

1

1.5

x

F (x)

−0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

pdf1

x

f(x)

−0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

cdf1

x

F (x)

−0.5 0.5 1 1.5

0.5

1

1.5

pdf2

x

f(x)

−0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

cdf2

x

F (x)

−0.5 0.5 1 1.5

0.5

1

1.5

2

pdf3

x

f(x)

−0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

cdf3

x

F (x)
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2.4 Mean and variance of a continuous random variable

The pdf of a continuous random variable also contains all the information required to calculate

the expected value (E[X] or µ) and the variance (V ar[X] or σ2) of a random variable.

For a continuous random variable, the mean is defined as

E[X] = µ =

∫ ∞

−∞
xf(x)dx

The variance of a random variable, which provides a measure of the spread of the possible

outcomes around the mean, is also defined as an expected value, namely, the expected value of

the squared deviation from the mean:

var[X] = E
[
(X − µ)2

]
=

∫ ∞

−∞
(x− µ)2f(x)dx

Fortunately, in the remainder of this section we will introduce particular types of continuous

random variables for which the calculation of the mean and the variance of a distribution does

not require the calculation of integrals. These distributions (for example the exponential or

normal distribution - yet to be introduced) are described by sets of parameters and if we know

these parameters then we can use these (with easy formulae) to calculate the mean and expected

values of these distributions. But the above formulae describe how you could derive these by

first principles.

3 Example Distributions

With the theory out of the way, let’s think of examples for continuous distributions. In fact we

are spoiled for choice. Check out this list of different continuous distributions from Wikipedia.

We need this large range of different distributions as any random variable will have different

properties and we will, in all cases, have to try and find that distribution that has properties

that best represent that of the random variable we are interested in. As it turns out there are

more than 100 continuous distribution, we therefore discuss the most important ones of these

in this section.

3.1 Uniform distribution

Let us start by introducing the simplest continuous probability distribution – the uniform dis-

tribution. This probability distribution provides a model for continuous random variables that
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are evenly (but randomly) distributed over a certain interval.

It should be noted though that there is not only one uniform distribution, there is an infinite

number of uniform distributions depending on which interval [a, b] we define the random variable

on. In the context of distributions we call the a and b parameters. For different distributions

parameters have different meanings. Here they are the minimum and maximum values. Almost

all distributions do have parameters changing them will have different effects.

Often you will see the uniform distribution defined on [0, 1] discussed. That is the standard

uniform distribution. The main properties would not change, but the actual probabilities, e.g.

Pr(0.25 < X ≤ 0.5) would.

3.1.1 pdf of uniform distribution

For any uniform random variable defined over the range from a to b, the probability density

function is as follows:

f(x) =

 1
b−a , a ≤ x ≤ b

0, otherwise

The probability density function can be used to find the probability that the random variable

falls within a specific range. Graphically, the shape under the density function forms a rectangle,

as shown in Figure 10. The rectangle’s area is equal to 1. Figure 10 shows a density function

for a set of values between a and b. Each density is a horizontal line segment with constant

height 1
b−a over the interval from a and b. Outside the interval, f(X) = 0. This means that for

a uniformly distributed random variable X, values below a and values above b are impossible.

As the distance between a and b increases, the density at any particular value within the

distribution boundaries decreases. Since the probability density function integrates to 1, the

height of the probability density function decreases as the base length increases.

Figure 9: Uniform distribution
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3.1.2 cdf of uniform distribution

From the introduction of cdf above, we know that the probability that X will fall below a point

is provided by the area under the density curve and to the left of that point. In other words,

the cumulative probability distribution function, P (X ≤ x) = (x−a)
(b−a) , is represented by this

area. The cumulative function for values of X between a and b is the area of the rectangle,

which, again, is found by multiplying the height, 1
b−a , times the base, x − a. To the left of a,

the cumulative probabilities must be zero, whereas the probability that X lies “below points

beyond b” must be 1. As such, the cumulative distribution function can be written as follow:

F (x) =


0, x < a

x−a
b−a , a ≤ x ≤ b

1, x > b

3.1.3 Distributional properties

We said above that in the case of the uniform distribution the parameters a and b determine the

min and max possible values of the uniform distribution. The properties of a random variable

we usually are interested in are the mean and the variance (and perhaps other higher order

moments like skewness). These properties are related to the parameters of the distribution.

How they are linked very much depends on the type of distribution we are looking at. For the

uniform distribution they are linked as follows.

The uniform distribution has parameters a and b. The mean and variance of the uniform

distribution are determined by these two parameters as follows:

E[X] =
a+ b

2

V ar[X] =
(b− a)2

12

Example. 1. Flight time of an airplane traveling from Chicago to New York

Suppose the flight time can be any value in the interval from 120 minutes to 140 minutes.

f(x) =

 1
20 , 120 ≤ x ≤ 140

0, otherwise

where: x = Flight time of an airplane traveling from Chicago to New York
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What is the probability of a flight time between 120 and 130 minutes?

Hint:

Figure 10: Uniform distribution

P (120 ≤ x ≤ 130) = F (130)− F (120) = 1/20× 130− 1/20× 120 = 1/20× (130− 120) = 0.5

2. An application of the uniform distribution in quality control.

A quality control inspector for Gonsalves Company, which manufactures aluminum water pipes,

believes that the product has varying lengths. Suppose the pipes turned out by one of the pro-

duction lines of Gonsalves Company can be modeled by a uniform probability distribution over

the interval 29.50 - 30.05 ft.

Calculate the mean and variance.

Hint: The mean and variance of X, the length of the aluminum water pipe, can be calculated

as follows.

E[X] =
a+ b

2
=

29.50 + 30.05

2
= 29.775ft

V ar[X] =
(30.05− 29.50)2

12
= 0.0252

This information can be used to create a control chart to determine whether the quality of the

water pipes is acceptable.

3.1.4 Applications

We do know many examples of uniform distributions. The outcome of a dice is equally/uniformly

distributed from 1 to 6. Whether you get heads or tails on a coin is uniformly distributed between

21



the two possible outcomes. Whether you get, on a roulette wheel any of the outcomes 0 to 36

is uniformly distributed. However, these are all discrete and not continuous distributions.

Clearly the continuous uniform distribution is a very special type of distribution. It actually

has important uses in statistical theory, but it is not so easy to find real life examples for a

continuous-valued uniform distribution. Take the above example for the flight time between

Chicago and New York. It is clearly problematic to assume that the flight time could not

exceed 140 minutes.

So, a uniform distribution appears inadequate. We shall introduce two more examples of con-

tinuous distributions (remember there are 100+): the exponential distribution and the normal

distribution. The latter is so important that we shall have a special lesson on it.

Example. For which of the following does uniform random variable appear most appropriate?

□ The number of cars passing Old Trafford between 8 and 9am on a Monday morning

□ The day of the year (from 1 to 365) someone has their birthday.

□ The age of people in a random sample asked outside University Place.

□ The income of people in a random sample asked outside University Place.

Hint: The birthday would be the closest, but even that is not uniformly distributed. See this

website.

3.1.5 Additional resources

Khan Academy:

� This is a clip to give an introduction of continuous probability distribution using uniform

distribution as an example. Here is the link to the clip: [https://www.youtube.com/wa

tch?v=j8XLYFzTJzE&ab_channel=KhanAcademy].

3.2 Exponential distribution

We now introduce a continuous distribution, the exponential distribution, which is useful in

describing the time it takes to complete a task.

The exponential random variables can be used to describe
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Figure 11: pdf of exponential random variable, f(x) = exp(−x).

� Time between successive cars passing a junction on a particular road

� Time between vehicle arrivals at a toll booth

� Time required to complete a questionnaire

In waiting line applications, the exponential distribution is often used for service times.

3.2.1 pdf of exponential distribution

Let the continuous random variable, denoted X, monitor the elapsed time, measured in minutes,

between successive cars passing a junction on a particular road. Traffic along this road in general

flows freely, so that vehicles can travel independently of one another, not restricted by the car

in front. Occasionally, there are quite long intervals between successive vehicles, while more

often there are smaller intervals. To accommodate this, the following pdf for X is defined:

f(x) =

1
θ exp(−

x
θ ), x > 0,

0, x ≤ 0.

In this case we have one parameter, θ. For this initial discussion we shall set that parameter to

θ = 1, but you should keep in mind that it could be any other positive value.

The pdf of f(x), with θ = 1, looks as follows:

Example. Verify that
∫∞
0 exp(−x)dx = 1∫∞

0 f(x)dx =
∫∞
0 exp(−x)dx = [−exp(−x)]∞0 = −exp(−∞)− (−exp(−0)) = −0− (−1) = 1
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From the picture of the pdf it is clear that

Pr(a < X ≤ a+ 1) > Pr(a+ 1 < X ≤ a+ 2),

for any number a > 0. By setting a = 1, say, this implies that an elapsed time of between 1

and 2 minutes has greater probability than an elapsed time of between 2 and 3 minutes; and, in

turn, this has a greater probability than an elapsed time of between 3 and 4 minutes, etc; i.e.,

smaller intervals between successive vehicles will occur more frequently than longer ones.

Suppose we are interested in the probability that 1 < X ≤ 3, i.e., the probability that the

elapsed time between successive cars passing is somewhere between 1 and 3 minutes. To find

this, we need

Pr(1 < X ≤ 3) =

∫ 3

1
exp(−x)dx = [− exp(−x)]31 = −exp(−3)− (− exp(−1)) = 0.318

One might interpret this as meaning that about 32% of the time, successive vehicles will be

between 1 and 3 minutes apart.

Example. Imagine yo are an aspiring YouTuber and you want to model your viewers’ behaviour.

In particular you are interested in how long any viewer sticks with your video clip. (Or how

long does it take for a viewer to click away).

It is well known that for most videos the majority of viewers leave a video very quickly.

Figure 12: Distribution of time at which viewers of a particular YouTube video leave a video.

The image above illustrates that the distribution of watching times for a video roughly looks like

an exponential distribution.

The exponential distribution we looked at previously is known as the unit exponential distri-

bution (as we chose θ = 1). In general, we say that the continuous random variable X has an

exponential distribution if it has probability density function given by
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f(x) =
1

θ
exp(−x

θ
), x > 0; θ > 0

where θ is called the parameter of the distribution (sometimes this is also called the mean of the

distribution for reasons which will become apparent very soon). Note that when θ = 1, we get

back to the special case of the unit exponential distribution. Notice that the random variable,

here, can only assume positive values and confirm that the pdf integrates to a value of 1 (as any

pdf should):

∫ ∞

0
f(x)dx =

∫ ∞

0

1

θ
exp(−x

θ
)dx = [− exp(−x

θ
)]∞0 = 1

3.2.2 cdf of exponential distribution

As we discussed earlier, the fundamental relationship between the cdf and pdf as:

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(t) dt

Then we make use of the pdf of the exponential distribution, and noting that the lower limit of

such a random variable always is 0, and derive the cdf as

F (x) = Pr(X ≤ x) =

∫ x

0

1

θ
exp(− t

θ
)dt = [− exp(− t

θ
)]x0 = − exp(−x

θ
)−[− exp(−0

θ
)] = 1−exp(−x

θ
)

The cumulative distribution function of exponential distribution is as follow

F (x) =

1− exp(−x
θ ), x > 0,

0, x ≤ 0.

where θ > 0.

In this way, we could make use of cdf to calculate the probablity as well. Following above

example. Suppose we are interested in the probability that 1 < X ≤ 3, i.e., the probability that

the elapsed time between successive cars passing is somewhere between 1 and 3 minutes. To

find this, we need

Pr(1 < X ≤ 3) =

∫ 3

1
exp(−x)dx = [− exp(−x)]31 = exp(−1)− exp(−3) = 0.318

Alternatively, we could use cdf

Pr(1 < X ≤ 3) = F (3)− F (1) = (1− exp(−3))− (1− exp(−1)) = exp(−1)− exp(−3) = 0.318
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Example. Service time at the library information desk.

Service times (in minutes) for customers at a library information desk can be modelled by an

exponential distribution with a mean service time of 5 minutes (θ = 5). What is the probability

that a customer service time will take longer than 10 minutes?

Hint: Let x denote the service time in minutes. The mean service time is 5 minutes so θ = 5.

Using cdf, the required probability can be calculated as follows:

Pr(X > 10) = 1− Pr(X ≤ 10) = 1− F (10) = 1− (1− exp(−10

5
)) = exp(−2) = 0.1353

Thus, the probability that a service time exceeds 10 minutes is 0.1353.

3.2.3 Distributional properties

The exponential distribution has a parameter θ (theta), which represents the mean of exponen-

tial distribution. The mean and variance of the exponential distribution are determined by θ as

follows:

E[X] = θ

V ar[X] = θ2

In addition, when working with the exponential distribution it is essential to you remember

rules of calculation with the exponential function

1. y = exp(x) = ex is a strictly positive and strictly increasing function of x

2. dy
dx = ex and d2y

dx2 = ex

3. ln y = x

4. When x = 0, y = 1, and y > 1 when x > 0, y < 1 when x < 0

5. By the chain rule of differentiation, if y = e−x then dy
dx = −e−x.

3.2.4 Poisson and exponential distribution

The exponential distribution is related to the Poisson distribution.

The Poisson distribution is the distribution of the number of occurrences of an event in a given

time interval of length t. The single parameter of the Poisson distribution is λ, the intensity
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of the process. Think of the number as the average occurrence of the event being counted.

For example, say, the average arrival rate of customers at the Brownell Bank is 5 per 100s.

Suppose that instead of the number of occurrences in a given time period, we are interested in

the amount of time until the next customer arrives at the bank. This is a problem to be solved

by the exponential distribution instead of the Poisson distribution.

As another example, if the number of traffic accidents in an interval of time follows the Poisson

distribution, the length of time from one accident to another follows the exponential distribution.

The exponential distribution can also be applied to (1) the length of time that must pass before

the first incoming telephone call and (2) the length of time someone must wait for a cab in a

given location, such as Picadilly Station in Manchester.

Example. Time between accidents in typical British industrial plants (measured in weeks).

An industrial plant in Britain with 2000 employees has a mean time between accidents of 2.5

weeks. The number of accidents follows a Poisson distribution. What is the probability that the

time between accidents is less than 2 weeks?

Hint: Let x denote the time between accidents. The mean time between accidents is 2.5 weeks so

θ = 2.5. Poisson distribution provides an appropriate description of the number of occurrences

per interval, while the exponential distribution provides an appropriate description of the length

of the interval between occurrences. In this case, we are asking the the probability that the time

between accidents, which is exponential distribution.

Therefore, the required probability can be calculated as follows:

Pr(X < 2) = F (2) = 1− exp

(
− 2

2.5

)
= 1− exp(−0.8) = 1− 0.4493 = 0.5507

Thus, the probability of less than 2 weeks between accidents is about 55%.

3.2.5 Additional resources

� Wikipedia: Distribution, but note that they use slightly different notation in terms of the

parameter of the exponential distribution. They use λ which is related to our θ in the

following way, λ = 1
θ

� Wolfram MathWorld: Distribution, but note that they use slightly different notation in

terms of the parameter of the exponential distribution. They use λ which is related to our

θ in the following way, λ = 1
θ .
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� How to use EXCEL to calculate probabilities from an exponential distribution. Here is

the link to the first clip: [https://www.youtube.com/watch?v=7SixLei1L_8&ab_chann

el=RalfBecker].
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